
GCM 2010

The Third International Workshop on

Graph Computation Models

Proceedings

Enschede, The Netherlands, October 2010

Editors:
Rachid Echahed, Annegret Habel and Mohamed Mosbah

ii

Contents

Preface iv

M. Heumüller, S. Joshi, B. König and J. Stückrath
Construction of Pushout Complements in the Category of Hypergraphs 1

S. Dashkovskiy, H.-J. Kreowski, S. Kuske, A. Mironchenko, L.
Naujok and C. von Totth
Production Networks as Communities of Autonomous Units and Their
Stability . 17

Giorgio Bacci and Davide Grohmann
On the Decidability of Bigraphical Sortings . 33

Berthold Hoffmann and Mark Minas
Generating Instance Graphs from Class Diagrams with Adaptive Star
Grammars . 49

M. Asztalos, P. Ekler, L. Lengyel, T. Levendovszky and T.
Mészáros
Formalizing Models with Abstract Attribute Constraints 65

Paolo Bottoni, Andrew Fish and Francesco Parisi-Presicce
Incremental update of constraint-compliant policy rules 81

Detlef Plump, Robin Suri and Ambuj Singh
Minimizing Finite Automata with Graph Programs 97

U. Golas, E. Biermann, H. Ehrig and C. Ermel
A Visual Interpreter Semantics for Statecharts Based on Amalgamated
Graph Transformation . 111

A. Alqaddoumi, S. Antoy, S. Fischer and F. Reck
The Pull-Tab Transformation . 127

Celia Picard and Ralph Matthes
Coinductive graph representation: the problem of embedded lists 133

Ulrike Golas, Hartmut Ehrig and Frank Hermann
Formal Specification of Model Transformations by Triple Graph Gram-
mars with Application Conditions . 149

Hendrik Radke
Weakest Liberal Preconditions relative to HR* Graph Conditions 165

iii

Preface

This volume contains the proceedings of the Third International Workshop on
Graph Computation Models (GCM 20101). The workshop took place in En-
schede, The Netherlands, on October 2nd, 2010, as part of the fifth edition of
the International Conference on Graph Transformation (ICGT 2010).

The aim of GCM2 workshop series is to bring together researchers interested
in all aspects of computation models based on graphs and graph transformation
techniques. It promotes the cross-fertilizing exchange of ideas and experiences
among researchers and students from the different communities interested in the
foundations, applications, and implementations of graph computation models
and related areas. Previous editions of GCM series were held in Natal, Brazil
(GCM2006) and in Leicester, UK (GCM2008).

These proceedings contain 12 accepted papers. All submissions were subject
to careful refereeing. The topics of accepted papers range over a wide spectrum,
including theoretical aspects of graph transformation, proof methods, semantics
as well as application issues of graph computation models. Selected papers
from these proceedings will be published as an issue of the international journal
Electronic Communications of the EASST.

We would like to thank all who contributed to the success of GCM 2010, es-
pecially the Program Committee and the additional reviewers for their valuable
contributions to the selection process as well as the contributing authors. We
would like also to express our gratitude to all members of the Joint ICGT/SPIN
Conference Organizing Committee for their help in organizing GCM 2010 at En-
schede, The Netherlands.

August, 2010 Rachid Echahed, Annegret Habel and Mohamed Mosbah
Program co-chairs of GCM 2010

1GCM2010 web site: http://gcm2010.imag.fr
2GCM web site : http://gcm-events.org

iv

Program committee of GCM 2010

Frank Drewes Umea University, Sweden
Rachid Echahed LIG Lab., Grenoble, France (co-chair)
Emmanuel Godard University of Provence Aix-Marseille, France
Stefan Gruner University of Pretoria, South Africa
Annegret Habel University of Oldenburg, Germany (co-chair)
Dirk Janssens University of Antwerp, Belgium
Hans-Jörg Kreowski University of Bremen, Germany
Mohamed Mosbah University of Bordeaux 1, France (co-chair)
Detlef Plump University of York, UK

Additional Reviewers

Berthold Hoffmann
Barbara König
Alexander Paar
Christopher Poskitt
Caroline von Totth
Bruce Watson
Zhilin Wu

v

vi

Construction of Pushout Complements in the
Category of Hypergraphs

Marvin Heumüller1, Salil Joshi2, Barbara König1, and Jan Stückrath1

1 Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany

2 Indian Institute of Technology, Delhi, India

Abstract. We describe a concrete construction of all pushout comple-
ments for two given morphisms f : A → B, m : B → D in the category
of hypergraphs, valid also for the case where f, m are non-injective. To
our knowledge such a construction has not been discussed before in the
literature. It is based on the generation of suitable equivalence relations.
We also give a combinatorial interpretation and show how well-known
coefficients from combinatorics, such as the Bell numbers, can be recov-
ered.

1 Introduction

Pushout complements are an integral part of double-pushout rewriting [2, 4, 5]:
they implement the deletion of elements, whereas the creation of new elements
is implemented via a pushout. Hence the construction of pushout complements
is needed for many tools based on double-pushout graph rewriting. Most of the
time the left leg of a rule is considered to be injective and thus the construction of
pushout complements is greatly simplified compared to the general case, where
both morphisms might be non-injective. A thorough study of the expressiveness
of injective and non-injective rules and matches can be found in [6].

In [7] we considered a backwards analysis technique for graph transforma-
tion systems where rewriting steps have to be applied backwards. That is we
are interested in all predecessors of a given graph, which is a common scenario
in verification techniques. In this setting pushout complements have to be con-
structed for the right leg of a rule and in many applications this morphism is not
injective, especially in cases where graph nodes and edges are fused by rewriting.
(In [7] we considered in fact single-pushout rewriting [3] with pushouts in the
category of partial morphisms. The problem of computing such pushout com-
plements can be reduced to the construction of pushout complements for total
morphisms, hence the construction given in this paper can also be adapted to
the scenario in [7].)

Taking pushout complements for morphisms which are non-injective means—
intuitively—to “unmerge” or split nodes in all possible ways, which can lead to
a combinatorial explosion and serious efficiency problems.

In the literature the general case has so far received little attention. In the 70s
the papers introducing and studying the notion of pushout complement [4, 5, 9]

1

restricted to cases where either a vertical or a horizontal morphism is injective.
Furthermore there are some investigations into taking pushout complements in
more general categories [1, 8], but they usually assume that the first morphism is
a mono or consider only the minimal pushout complement. Since a construction
of general pushout complements does not seem to be available in the literature,
we specified this construction ourselves and found it surprisingly complex. Hence
we believe that it is of general interest.

We will in the following define the construction which computes all pushout
complements for two given morphisms f : A → B, m : B → D. This is done
by defining an auxiliary graph A ⊕ D̃ which is the disjoint union of A and a
disjoint collection of all nodes and edges of D, which are not in the image of m.
Then we enumerate all equivalences on A⊕ D̃ satisfying certain conditions and
factor through these equivalences. In this way we obtain all pushout complements
and our main theorem proves this fact. Furthermore—since the enumeration
of all equivalences on A ⊕ D̃ is very costly and there are serious issues with
efficiency—we consider optimizations. Finally we show how some coefficients
from combinatorics, such as Bell numbers or Stirling number of the second kind
arise as the number of pushout complements for certain pairs of arrows. This also
shows that there can be a combinatorial explosion in the number of constructed
pushout complements.

2 Preliminaries

We first define the usual notions of hypergraph and hypergraph morphism.

Definition 1 (Hypergraph). Let Λ be a finite set of labels and a function
ar : Λ→ N0 that assigns an arity to each label.

A (Λ-)hypergraph is a tuple (VG, EG, cG, lG) where VG is a finite set of nodes,
EG is a finite set of edges, cG : EG → V ∗G is a connection function and lG : EG →
Λ is the labelling function for edges. We require that |cG(e)| = ar(lG(e)) for each
edge e ∈ EG.

Definition 2 (Hypergraph morphism). Let G, G′ be (Λ-)hypergraphs. A
hypergraph morphism (or simply morphism) ϕ : G → G′ consists of a pair of
functions (ϕV : VG → VG′ , ϕE : EG → EG′) such that for every e ∈ EG it holds
that lG(e) = lG′(ϕE(e)) and ϕV (cG(e)) = cG′(ϕE(e)).

In the following we will simply use graph to denote a hypergraph.
We will work extensively with equivalence relations and one required opera-

tion is equivalence closure that turns an arbitrary relation into an equivalence.

Definition 3 (Equivalence closure). Let A be a set and R be a relation R ⊆
A×A. The equivalence closure R of R is the smallest equivalence containing R.

In the following equivalence closure is mainly used if R is the union of two
equivalences ≡1,≡2 on A, i.e., R = ≡1 ∪ ≡2. In this case R is simply the

2

transitive closure of ≡1 ∪ ≡2 and can be written as

R = {(x, y) ∈ A×A | ∃x1, y1, . . . , xn, yn :
x = x1 ≡1 y1 ≡2 x2 ≡1 · · · ≡1 yn−1 ≡2 xn ≡1 yn = y}

Definition 4 (Pushout). Let A,B,C be graphs with graph morphisms f : A→
B and n : A→ C.

A

n

��

f
// B

m

�� m

��

C
g
//

g
++

D
h

D′

The graph D together with g : C → D and m : B → D is a pushout of f, n if the
following conditions are satisfied:

(1) m ◦ f = g ◦ n.
(2) For all m : B → D′, g : C → D′ satisfying m◦f = g ◦n there exists a unique

morphism h : D → D′ such that h ◦m = m and h ◦ g = g.

There is a well-known construction of pushouts [5] in the category of hyper-
graphs, where pushouts are obtained by taking the disjoint union of B and C
and factoring through an equivalence obtained from the morphisms f, n.

Proposition 1 (Pushout via equivalence classes). Let A,B,C be graphs
with graph morphisms f : A → B, n : A → C. We call A = (VA, EA, cA, lA) the
interface. We also assume that all node and edge sets are disjoint.3

Let ≡ be the equivalence closure of the relation ≡̃ on VB ∪ EB ∪ VC ∪ EC
which is defined as f(x) ≡̃n(x) for all x ∈ VA ∪ EA.

The gluing of B,C over A (written as D = (B ⊕ C)/≡) is defined as D =
(V,E, c, l) with:

– V = (VB ∪ VC)/ ≡,
– E = (EB ∪ EC)/ ≡,

– c : E → V ∗ where c([e]≡) = [v1]≡ . . . [vk]≡ and v1 . . . vk =
{
cB(e) if e ∈ EB
cC(e) if e ∈ EC

– l : E → Λ where l([e]≡) =
{
lB(e) if e ∈ EB
lC(e) if e ∈ EC

The resulting morphisms are m : B → D, g : C → D with:

g(x) = [x]≡ m(x) = [x]≡

Then D together with the morphisms g,m is the pushout of f, n.
3 Disjointness can be achieved easily by renaming.

3

Definition 5 (Pushout complement). Given morphisms f : A→ B, m : B →
D a pushout complement of f,m is a graph C and a pair of morphisms n : A→
C, g : C → D such that g,m form the pushout of f, n. We say that two pushout
complements Ci with ni : A → Ci, gi : Ci → D for i = 1, 2 are isomorphic if
there exists an isomorphism j : C1 → C2 with j ◦ n1 = n2 and g2 ◦ j = g1.

There is a well-known characterization of the existence of pushout comple-
ments (see for instance Proposition 3.3.4 of [2]).

Proposition 2 (Existence of pushout complements). A pushout comple-
ment of f,m exists if and only if the following two conditions are satisfied:

– Identification condition: for all x, y ∈ VB ∪EB with m(x) = m(y) there exist
x′, y′ ∈ VA ∪ EA with f(x′) = x, f(y′) = y.

– Dangling condition: for every node v ∈ VB where m(v) is attached to an
edge e ∈ ED which is not in the range of m, there exists a node v′ ∈ VA with
f(v′) = v.

3 Construction of pushout complements

In this section we will give a concrete construction for pushout complements, i.e.,
given morphisms f : A→ B and m : B → D, we construct all pairs of morphisms
n : A → C, g : C → D (up to isomorphism) such that the resulting square is a
pushout.

A
f
//

n

��

B

m

��

C
g
// D

We use the following abbreviations: since it is often not necessary to distin-
guish between edges and nodes of a graph, we will use x ∈ A as shorthand for
(x ∈ EA or x ∈ VA) and f(x) as shorthand for fV (x) if x ∈ VA and fE(x) if
x ∈ EA respectively.

Construction 1 (Pushout complements)

(1) Construct a graph D̃ as follows:
– For every node v ∈ VD that is not in the range of m, add a copy of v to
D̃. The copy of v will be denoted by v′.

– For every edge e ∈ ED that is not in the range of m, add a copy of e,
attached to fresh nodes, to D̃. (This is done also if some of the nodes
attached to e are in the range of m.) The copy of e will be denoted by e′

and the fresh nodes by (e′, i), i ∈ {1, . . . , ar(lD(e))}.
This means that D̃ is a collection of disjoint nodes and edges.

(2) Now construct A ⊕ D̃, the disjoint union of A and D̃, with morphisms
n′ : A→ A⊕ D̃, g′ : A⊕ D̃ → D as follows:

4

– n′ is the canonical embedding of A into A⊕ D̃.
– For an item x of A⊕D̃ we define g′(x) = m(f(x)) if x is contained in A.

If x = y′ for some item y of D we define g′(x) = y. Finally if x = (e′, i)
for some edge e of D we have g′((e′, i)) = [cD(e)]i.4 (See Step (1) of this
construction where items of the form y′ were created.)

Clearly g′ ◦ n′ = m ◦ f .
(3) Define two equivalences on the items of A⊕ D̃:

– x ≡g′ y if and only if g′(x) = g′(y).
– x ≡f y if either x = y or x, y are both items of A and f(x) = f(y).

It can easily be seen that ≡f is a refinement of ≡g′ , i.e., x ≡f y implies
x ≡g′ y.

(4) Now consider all equivalences ≡′ on A⊕ D̃ such that ≡g′ is the equivalence
closure of ≡f ∪ ≡′. Furthermore whenever e1 ≡′ e2 for two edges e1, e2,
we require that [cA⊕D̃(e1)]i ≡′ [cA⊕D̃(e2)]i for all 1 ≤ i ≤ ar(lG(e1)) =
ar(lG(e2)). For each such equivalence ≡′ construct the graph C = (A⊕D̃)/ ≡′
with morphisms n : A→ C, g : C → D as specified below:

n(x) = [n′(x)]≡′ g([x]≡′) = g′(x)

Note that g is well-defined since ≡′ refines ≡g′ .

Example 1. Consider for instance the situation below on the left. We have a
single binary edge, which is unlabeled (labels do not play a role for this example).

a

b

c

d

f
//
a, b

c, d

m

��

f e

a

b

c

d

f
//

n′

��

a, b

c, d

m

��
e′

a

b

c

d

(e′, 1) (e′, 2)

g′
// f e

On nodes we have the equivalences ≡g′ , ≡f , represented by their equivalence
classes:

– ≡g′ : {a, b, c, d, (e′, 1), (e′, 2)}
– ≡f : {a, b}, {c, d}, {(e′, 1)}, {(e′, 2)}

Now there are many equivalences ≡′, which are possible. First, we have to relate
at least one node from {a, b} to one node from {c, d}. Furthermore we have to
relate each of the two nodes (e′, 1), (e′, 2) to an equivalences class containing one
of a, b, c, d. For instance the following three equivalences ≡′ are all permissible:
4 For a sequence s we denote by [s]i the i-th element of s.

5

– {a, c}, {b, (e′, 1)}, {d, (e′, 2), }
– {a, c, (e′, 1), (e′, 2)}, {b}, {d}
– {a, b, c, d, (e′, 1), (e′, 2)}

This results in the following three graphs:

e′

a, c

b, (e′, 1) d, (e′, 2)

a, c, (e′, 1), (e′, 2) e′

b

d

e′a, b, c, d, (e′, 1), (e′, 2)

But there are many more possibilities. In order to enumerate them more
systematically we consider all 15 equivalences on the set {a, b, c, d}, given by
equivalence classes. The ones that do not satisfy the requirement above are
crossed out.

{a, b, c, d} {a}, {b, c, d} {b}, {a, c, d} {c}, {a, b, d} {d}, {a, b, c}
{a, b}, {c, d} {a, c}, {b, d} {a, d}, {b, c} {a, b}, {c}, {d}

{a, c}, {b}, {d} {a, d}, {b}, {c} {b, c}, {a}, {d} {b, d}, {a}, {c}
{c, d}, {a}, {b} {a}, {b}, {c}, {d}

Now for k equivalence classes there are k2 possibilities to associate (e′, 1) and
(e′, 2) to these equivalence classes. Hence in total there are 1 + 6 ·22 + 4 ·32 = 61
equivalences. Some of them result in isomorphic graphs, however they are all
non-isomorphic in the sense of Definition 5 (see also Proposition 4).

We now show that every graph C constructed as specified in Construction 1
is a pushout complement and that all pushout complements can be obtained in
this way.

Proposition 3. Assume that f : A→ B, m : B → D are given and that the con-
ditions of Proposition 2 are satisfied. Then every equivalence relation ≡′ created
by Construction 1 generates a pushout complement.

Proof. Assume that ≡′ is one of the equivalences of Construction 1 and that C
and n, g have been obtained by factoring A⊕ D̃ through this equivalence.

As a first step we show that m◦f = g◦n, i.e., the resulting square commutes:
because n′ is the canonical embedding of A into A⊕ D̃ (and therefore injective)
and g′(x) is defined as m(f(x)) if x ∈ A, m(f(x)) = g′(n′(x)) holds. Furthermore
by definition of n, g we have:

m(f(x)) = g′(n′(x)) = g([n′(x)]≡′) = g(n(x))

Now we show that C is indeed a pushout complement by verifying that
the conditions of Definition 4 are satisfied: we have to prove that for every
other commuting pair of morphisms g : C → D′, m : B → D′ there is a unique

6

morphism h : D → D′ such that h ◦ g = g and h ◦m = m.

A

n

��

f
// B

m

�� m

��

C
g
//

g
++

D
h

D′

We define the required morphism h as follows:

h(x) =
{
g(x̃) if ∃x̃ ∈ C : g(x̃) = x
m(x̃) if ∃x̃ ∈ B : m(x̃) = x

It remains to be shown that h is a well-defined morphism, and that it is the
unique morphism such that the triangles commute.

Commutativity. By definition h(m(x)) = m(x) and h(g(x)) = g(x) hold.

Uniqueness. Let h′ be another morphism with h′ ◦ g = g and h′ ◦m = m. Due
to the definition of g each element of D has a preimage either under g or m.

(1) if x = g(x′) then h′(x) = h′(g(x′)) = g(x′) = h(g(x′)) = h(x)
(2) if x = m(x′) then h′(x) = h′(m(x′)) = m(x′) = h(m(x′)) = h(x)

Well-definedness. As seen before h is defined for all elements of D. To show
well-definedness it is therefore only necessary to prove that different x̃ having
the same image under g or m also have the same image under g or m.

Every element of C is an equivalence class of ≡′. Therefore, let x = [x′]≡′ and
y = [y′]≡′ . In the following we do not strictly distinguish between an element
of A and its image under n′ because n′ is a canonical embedding. Hence for
x′ ∈ A⊕ D̃ the property x′ ∈ A holds if and only if x′ has a preimage under n′.

The first property we show is that g(x) = g(y) ⇒ g(x) = g(y) holds for all
x, y ∈ C. For x 6= y there are two cases which have to be considered:

(1) x′, y′ ∈ A, i.e., we assume that the equivalence classes x, y have represen-
tatives in A (which also implies n(x′) = x and n(y′) = y). We distinguish
further subcases:
(a) Case f(x′) = f(y′)

f(x′) = f(y′) ⇒ m(f(x′)) = m(f(y′)) ⇒
g(n(x′)) = g(n(y′)) ⇒ g(x) = g(y)

(b) Case f(x′) 6= f(y′)⇒ x′ 6≡f y′ because x′ 6= y′.
x′ ≡g′ y′ because of g′(x′) = g([x′]≡′) = g(x) = g(y) = g([y′]≡′) = g′(y′).
Due to this equivalence there are x1, y1, . . . , xn, yn ∈ A such that x′ ≡f

7

x1, xi ≡′ yi, yi ≡f xi+1 and yn ≡f y′ for 1 ≤ i < n. Using the definition
of n and the fact that xi and yi are elements of A it can be shown that
the equivalence xi ≡′ yi implies n(xi) = [n′(xi)]≡′ = [n′(yi)]≡′ = n(yi).
These properties lead to the following equality

m(f(xi)) = g(n(xi)) = g(n(yi)) = m(f(yi)) = m(f(xi+1))

for every i. Together with the equalities g(n(x′)) = m(f(x′)) = m(f(x1))
and g(n(yn)) = m(f(yn)) = m(f(y′)) = g(n(y′)) it follows that g(x) =
g(y).

(2) x contains no elements of A (implying x′ /∈ A)
Because x contains no elements of A, it also has no preimage under n.
As already shown g([x′]≡′) = g([y′]≡′) implies x′ ≡g′ y′. Because of this
equivalence there are x1, y1, . . . , xn, yn ∈ A satisfying x′ ≡f x1, xi ≡′ yi,
yi ≡f xi+1, yn ≡f y′ for 1 ≤ i < n. Due to the definition of ≡f it holds that
x′ = x1 because x′ is not in A. Also y1 can not be an item of A because
otherwise [x′]≡′ would contain items of A. This property can be extended to
yi = xi+1 and yn = y′, which leads to xi ≡′ xi+1. Because of x′ = x1 and
xn ≡′ y′, x′ and y′ are equivalent according to ≡′ and hence x and y must
be equal. This clearly implies g(x) = g(y)⇒ g(x) = g(y).

The second property needed for well-definedness is m(x) = m(y) ⇒ m(x) =
m(y). The identification condition (see Proposition 2) states that because of
m(x) = m(y) there are x′, y′ ∈ A such that f(x′) = x and f(y′) = y. Using this
and the first property the desired equality can easily be shown by:

m(x) = m(y) ⇒ m(f(x′)) = m(f(y′)) ⇒ g(n(x′)) = g(n(y′)) ⇒
g(n(x′)) = g(n(y′)) ⇒ m(f(x′)) = m(f(y′)) ⇒ m(x) = m(y)

The last property to show is g(x) = m(y) ⇒ g(x) = m(y). We first show that
g(x) = m(y) implies that there is a y′ with f(y′) = y: the only items of D which
are in the range of both g and m are the images of elements of A and nodes
in the range of m which are attached to edges which are not in the range of
m. However, due to the dangling condition (see Proposition 2) such nodes must
have a preimage in A. Together with the first property this implies:

g(x) = m(y) ⇒ g(x) = m(f(y′)) ⇒ g(x) = g(n(y′)) ⇒
g(x) = g(n(y′)) ⇒ g(x) = m(f(y′)) ⇒ g(x) = m(y)

Morphism. Finally it is straightforward to prove that h satisfies indeed the
morphism properties. For instance in order to show that h(cD(e)) = cD′(h(e))
for an edge e ∈ D we have to distinguish two cases: if there exists an edge ẽ ∈ C
with g(ẽ) = e, then—since g is a morphism—we have g(cC(ẽ)) = cD(e). Hence
h(cD(e)) = h(g(cC(ẽ))) = g(cC(ẽ)) = cD′(g(ẽ)) = cD′(h(e)) by definition of h.
The case ẽ ∈ B with m(ẽ) = e is analogous.

This proves that every diagram formed by an equivalence generated in the
given construction is a pushout diagram. ut

8

Proposition 4. Assume that f : A → B, m : B → D are given. Then every
pushout complement n : A → C, g : C → D of f,m can be obtained using Con-
struction 1. Furthermore two isomorphic pushout complements give rise to the
same equivalence ≡′.

Proof. Now assume that C with morphisms n, g is a pushout complement of f,m.
We will show that there is an equivalence ≡′, as specified by Construction 1, such
that C is obtained by factoring A⊕ D̃ through this equivalence.

A

n

��

f
//

n′

		

B

m

��

C
g
// D

A⊕ D̃
k

<<

g′

::

For the given pushout of f ,n we will define a surjective morphism k : A⊕D̃ → C
(see diagram above). Our next step is then to define an equivalence relation ≡′
where x, y ∈ A⊕ D̃ are equivalent if and only if k(x) = k(y). The factorization
of A ⊕ D̃ through ≡′ then results in C and it has to be shown that the equiv-
alence relation ≡′ is one of the equivalence relations obtained by the presented
construction.

Let ≡ be the equivalence closure of the relation ≡̃ where f(a) ≡̃n(a) for all
a ∈ A. Due to the construction of pushouts using equivalence classes we can
assume without loss of generality that D = (B ⊕ C)/ ≡ (see Proposition 1).
Furthermore for b ∈ B we have m(b) = [b]≡ and for c ∈ C we have g(c) = [c]≡.

We define k as follows: if x ∈ A, then k(x) = n(x). If x is of the form y′ for
some item y of D, then — since y is not in the image of m — there must be a
c ∈ C with g(c) = y. In this case we define k(x) = c. If x is of the form (e′, i) for
some edge e of D, then k(x) = [cC(k(e))]i.

Well-definedness. Problems with well-definedness may arise only in the second
case of the definition of k, where x is of the form y′ for some item y of D. In this
case y is not in the range of m due to the construction of A⊕ D̃. Therefore y as
an equivalence class does not contain elements of B. Because of the definition of
≡ every equivalence class containing elements of either B or C (but not both)
only contains one element, hence y contains exactly one element c of C. Because
g(c) = [c]≡ = y the preimage of y under g is unique and therefore k(x) is
well-defined in this case.

Morphism. Note that k is obviously a morphism on the elements of A. Fur-
thermore D̃ is a disjoint collection of nodes and edges and the third case in the
definition of k ensures that it is indeed a valid morphism.

9

Surjectivity. We now show that k is surjective. Let therefore c ∈ C be any
element of C and we distinguish the following two cases:

(1) ∃y ∈ A : n(y) = c: By definition k(y) = n(y) = c.
(2) @y ∈ A : n(y) = c: Without a preimage under n the equivalence class [c]≡

contains only c because c is not equivalent to any element of B according to
≡. Therefore [c]≡ is not in the range of m since otherwise the equivalence
class would contain elements of B. Because of the definition of k there is a
y′ ∈ D̃ with g′(y′) = y = [c]≡ = g(c), hence k(x) = c.

Commutativity. We have to show that both triangles commute:

(1) We first check that k(n′(x)) = n(x) for any x ∈ A:
As already seen n′(x) = x if x ∈ A. Using the definition of k we obtain
k(n′(x)) = k(x) = n(x).

(2) Now we show that g(k(x)) = g′(x) for any x ∈ A. There are two cases:
(a) x ∈ A: Using k(x) = n(x) if x ∈ A and m ◦ f = g′ ◦ n′ due to the

definition of g′ and n′ it can be shown that:
g(k(x)) = g(n(x)) = m(f(x)) = g′(n′(x)) = g′(x)

(b) x ∈ D̃: In this case k(x) = c and g(c) = g′(x), therefore g(k(x)) = g(c) =
g′(x).

The equivalence ≡′ is generated. We will now show that ≡′ is generated by the
given construction. Specifically we have to show that the equivalence closure of
≡′ ∪ ≡f is ≡g′ , i.e., that ≡′ ∪ ≡f = ≡g′ .

– ≡′ ∪ ≡f ⊆ ≡g′ :
The equivalence ≡f is clearly a subset of ≡g′ because g′(x) = m(f(x)) if
x ∈ A. Having the same image under f therefore implies having the same
image under g′.
The equivalence ≡′ is also a subset of ≡g′ because of:

x ≡′ y ⇒ k(x) = k(y)⇒ g′(x) = g(k(x)) = g(k(y)) = g′(y)

– ≡′ ∪ ≡f ⊇ ≡g′ :
Let x, y be elements of A ⊕ D̃ with x ≡g′ y, hence g′(x) = g′(y). As shown
above the equivalence classes g′(x) and g′(y) of ≡ contain k(x) and k(y)
respectively, therefore k(x) ≡ k(y). Hence there are c0, b1, c1, . . . bm, cm such
that bi ≡̃ ci for 1 ≤ i ≤ m and bj+1 ≡̃ cj for 0 ≤ j < m with k(x) = c0 and
k(y) = cm. Using the definition of ≡̃ leads to the following properties:

bi ≡̃ ci ⇒ ∃ai ∈ A : f(ai) = bi ∧ n(ai) = ci

bi+1 ≡̃ ci ⇒ ∃a′i ∈ A : f(a′i) = bi+1 ∧ n(a′i) = ci

It can be inferred that ai+1 and a′i have the same image under f , hence
ai+1 ≡f a′i, and that ai and a′i have the same image under n, hence ai ≡′ a′i.
This leads to x ≡′ a′0 ≡f a1 ≡′ a′1 ≡f · · · ≡′ a′m−1 ≡f am ≡′ y, hence
x ≡′ ∪ ≡f y.

This proves that every pushout complement can be obtained by using the given
construction.

10

Isomorphism of pushout complements. It is left to show that, given two iso-
morphic pushout complements ni : A → Ci, gi : Ci → D with i = 1, 2 and an
isomorphism j : C1 → C2 with j ◦n1 = n2, g2 ◦j = g1, the corresponding equiva-
lences ≡′ are the same. For this it is sufficient to show that j commutes with the
morphisms k1, k2, where ki : A⊕ D̃ → Ci and k1, k2 are constructed analogously
to the morphism k above. That is, we have to show that j ◦k1 = k2. Then k1, k2

give rise to the same equivalence ≡′.
We distinguish the following cases (as in the definition of k): if x ∈ A, then

j(k1(x)) = j(n1(x)) = n2(x) = k2(x). If x is of the form y′ for some item y of
D, then we define ki(x) = ci for ci with gi(ci) = y. Since g2(j(c1)) = g1(c1) = y
we obtain c2 = j(c1). Hence j(k1(x)) = j(c1) = c2 = k2(x). Finally, if x is of the
form (e′, `) for some edge e of D, then ki(x) = [cC(ki(e))]` and so j(k1(x)) =
j([cC(k1(e))]`) = [cC(j(k1(e)))]` = [cC(k2(e))]` = k2(x). This completes the
proof. ut

The fact that two isomorphic pushout complements give rise to the same
equivalence means that the number of generated (valid) equivalences is exactly
the number of different pushout complements. However, if we consider only iso-
morphisms on C—without requiring commutativity of the triangles consisting
of morphisms j, n1, n2 and j, g1, g2 (in the terminology of Definition 5)—there
will usually be fewer different pushout complements. The examples in Section 5
are chosen in such a way that both interpretations give rise to the same number.

4 Optimizations

In the given construction there exist several possibilities for optimization. These
lie in the construction of A⊕D̃ and in the method used to enumerate all possible
equivalences ≡′.

4.1 Possible Simplifications

In Step (1) of Construction 1 the graph D̃ is constructed by inserting all nodes
and edges of D which are not in the range of m. Additionally for every edge e
of D for every node connected with e a new node is inserted. This ensures that
every node attached to e is also in D̃. However, if e is connected to a node x
not in the range of m, another copy of this node has been added earlier to D̃.
Both are equivalent with respect to ≡g′ but not with respect to ≡f since they do
not have a preimage under n′. Therefore these two copies have to be equivalent
according to every possible equivalence ≡′. Hence the first copy was superfluous
and it was unnecessary to create it in the first place.

e′

e
w1

w2

v2

v3

v1
//

e

e′

w v v′

e′

ew1

w2

oo

11

The previous diagram shows an example graph D̃ generated by the given con-
struction if the middle graph is D and only w is in the range of m, but not in the
range of m ◦ f . In the left graph v1, v2 and v3 are all copies of v in the middle
graph and all have to be in the same ≡′-class. The construction would therefore
still be correct if the right graph is generated instead of the left graph.

In general it is only necessary to add one node to A⊕ D̃ for every node not
in the range of m and for every node in the range of m as many nodes as there
are edges not in the range of m connected with the node. This improvement
can help to manage the combinatorial explosion when determining all possible
equivalences ≡′.

4.2 Enumerating Equivalences

A problem not addressed earlier is how to generate all permissible equivalences
≡′. The straightforward way would be to enumerate all possible equivalences over
A ⊕ D̃ and to store every equivalence satisfying ≡′ ∪ ≡f = ≡g′ . This method
is however not recommended because of combinatorial explosion. Furthermore
many of these equivalences will not satisfy the required conditions. In the fol-
lowing we explain how the generation of equivalences could be handled more
efficiently.

If f is injective there is only one permissible equivalence ≡′. This is true since
in this case g must necessarily also be injective and hence ≡′ equals ≡g′ .

A non-injective morphism f produces several permissible equivalences ≡′.
In this case it is sufficient to look at each equivalence class of ≡g′ separately.
We further distinguish between equivalence classes which contain elements of A
and those which do not. In either case every equivalence class of ≡f is entirely
contained in exactly one equivalence class of ≡g′ due to the definition of g′.

If an equivalence class c of ≡g′ contains no elements of A, every equivalence
class of ≡f contained in c only contains one element. Therefore c must also be
an equivalence class of ≡′, i.e., all elements of c must be merged.

≡f ≡f

∈ A

6∈ A

≡f
≡g′

≡f

≡f

≡f

If an equivalence class c of ≡g′ contains elements of A, the equivalence classes
of ≡f in c contain either only elements of A or no elements of A (see figure
above). Only equivalence classes of ≡f containing elements of A can consist of
more than one element. Elements already equivalent according to ≡f do not have
to be equated via ≡′ because they will anyway be equivalent after the equiva-
lence closure. It is however necessary to add relations between elements in such

12

a way that the resulting structure connects all equivalence classes to each other,
possibly indirectly. (One such possibility connecting the three leftmost equiva-
lence classes is indicated by the dashed ovals in the figure above.) Therefore, in
order to calculate all permissible equivalences ≡′ for all elements of c, we first
enumerate all equivalences over elements contained in equivalence classes of ≡f
with more than two elements, but keep only those that induce connectivity. We
then distribute the remaining elements (contained in equivalence classes of ≡f
with only one element) to the resulting equivalence classes in every possible way.
The results are all equivalences ≡′ restricted to elements of c. If we perform these
steps for all other equivalence classes of ≡g′ , a complete equivalence ≡′ can be
obtained by taking arbitrary combinations of such (restricted) equivalences ≡′
for each class c.

5 Combinatorial Interpretation

Some coefficients from combinatorics arise naturally as the number of pushout
complements for a (parameterized) pair of arrows. We now present some exam-
ples, all of them for hypergraphs with unary edges only.

5.1 Bell Numbers

The n-th Bell number Bn is the number of equivalence relations on the set
{1, . . . , n}. The first Bell numbers (starting with B1) are: 1, 2, 5, 15, 52, 203,
877, 4140, . . . (see the On-Line Encyclopedia of Integer Sequences which can be
queried at http://www.research.att.com/~njas/sequences/).

Now take Λx = {x1, . . . , xn} as a label set. Assume thatXΛx is the graph with
n nodes, where to each node we attach a unary hyperedge and each hyperedge
has a different label. Furthermore ZΛx is the graph with one node to which n
hyperedges are attached, where each hyperedge has a different label.

We consider the unique morphism f : XΛx → ZΛx and the identity m =
idZΛx : ZΛx → ZΛx . Then—if we apply our construction—the graph A ⊕ D̃
will consist only of A = XΛx and all equivalences ≡′ on the nodes of XΛx are
admissible (for the edges each edge must be in a separate equivalence class).
Hence there are Bn different pushout complements up to isomorphism.

XΛx

f
// ZΛx

m

��

ZΛx

. . .

x1 xn

f
//

xn

x1

. . .

m

��

xn

x1

. . .

13

5.2 Stirling Numbers of the Second Kind

The Stirling number of the second kind Sn,k is the number of equivalence re-
lations with k equivalence classes on the set {1, . . . , n}. It holds that Bn =∑n
k=1 Sn,k.
The Stirling numbers satisfy the following recursive equation: Sn,k = Sn−1,k−1

+ k · Sn−1,k, which is based on a case distinction according to the element n:
either n is in an equivalence class of its own and the remaining n − 1 elements
have to be grouped in k− 1 equivalence classes; or the remaining n− 1 elements
have to be grouped in k equivalence classes and there are k possibilities to assign
n to one of these classes. Our implemented method for enumerating equivalences
follows the same pattern.

Now we set Λx = {x1, . . . , xn}, Λy = {y1, . . . , ym} and Λ = Λx∪Λy. We take
the unique morphism f : XΛx → ZΛx and the unique morphism m : ZΛx → ZΛ.

XΛx

f
// ZΛx

m

��

ZΛ

. . .

x1 xn

f
//

xn

x1

. . .

m
��

xn

x1
. . .

. . .y1

ym

Then A⊕D̃ is the disjoint union of XΛx and separate copies of m edges which
are labelled y1, . . . , ym. Now we take all permissible equivalences on the nodes of
the copy of XΛx . Assume that we have k equivalence classes. Then there are km

possibilities to distribute the m nodes of the separate edges over the equivalence
classes. Hence the total number of pushout complements is

n∑

k=1

Sn,k · km

Note that for the special case of m = 0 we obtain again the Bell numbers.
Another special case is n = 2, for which we obtain S2,0 ·0m+S2,1 ·1m+S2,2 ·2m =
1 + 2m pushout complements.

6 Conclusion

We have shown how to construct pushout complements in the category of hyper-
graphs in the general case when both given morphisms might be non-injective.

14

Such a construction is necessary for performing backwards analysis and com-
puting the set of predecessors of a given graph. We have implemented this con-
struction (in a tool that performs backwards search in well-structured transition
systems, based on [7]) and we presented the optimizations that we used in the
implementation.

Concerning combinatorics it would be interesting to have a general formula
that directly computes the number of pushout complement for an arbitrary pair
f,m of morphisms. However, the computation seems to be quite involved.

It is unclear to us whether the construction could be transferred to a more
categorical setting, similar to [1]. However, our main intention was to obtain an
efficient implementation.

Acknowledgements: We would like to thank Benjamin Braatz for our discus-
sions on this topic.

References

1. Benjamin Braatz, Ulrike Prange, and Thomas Soboll. How to delete categorically
– two pushout complement constructions. Unpublished, 2009.

2. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation—part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 1: Foundations, chapter 3. World Scientific, 1997.

3. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation—part II: Single pushout approach
and comparison with double pushout approach. In G. Rozenberg, editor, Handbook
of Graph Grammars and Computing by Graph Transformation, Vol.1: Foundations,
chapter 4. World Scientific, 1997.

4. H. Ehrig, M. Pfender, and H. Schneider. Graph grammars: An algebraic approach.
In Proc. 14th IEEE Symp. on Switching and Automata Theory, pages 167–180, 1973.

5. Hartmut Ehrig. Introduction to the algebraic theory of graph grammars. In Proc.
1st International Workshop on Graph Grammars, pages 1–69. Springer-Verlag, 1979.
LNCS 73.

6. Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph trans-
formation revisited. Mathematical Structures in Computer Science, 11(5):637–688,
2001.

7. Salil Joshi and Barbara König. Applying the graph minor theorem to the verification
of graph transformation systems. In Proc. of CAV ’08, pages 214–226. Springer,
2008. LNCS 5123.

8. Yasuo Kawahara. Pushout-complements and basic concepts of grammars in toposes.
Theoretical Computer Science, 77:267–289, 1990.

9. Barry K. Rosen. Deriving graphs from graphs by applying a production. Acta
Informatica, 4:337–357, 1975.

15

16

Production Networks as Communities of

Autonomous Units and Their Stability

Sergey Dashkovskiy, Hans-Jörg Kreowski, Sabine Kuske, Andrii Mironchenko,
Lars Naujok, Caroline von Totth �

University of Bremen
{kreo,kuske,caro}@informatik.uni-bremen.de
{dsn,andmir,larsnaujok}@math.uni-bremen.de

Abstract. In this paper, a discrete variant of production networks is
considered. Besides the mathematical models in terms of matrices and
vectors, production networks are modeled as communities of autonomous
units in a rule-based, graph-transformational and visual manner. More-
over, a sufficient criterion for the stability of a production network is
given where stability means that there exist suitable storage capacities
at the production sites that never flow over.

1 Introduction

In this paper, we consider a discrete variant of production networks (see, e.g., [1])
inspired by the work in [2–4] on continuous production networks and their sta-
bility. For a certain scenario it has been shown that the application of local
autonomous control methods on integrated production and transport processes
improves the handling of internal and external dynamics. A production network
in this scenario consists of production sites, which are represented as nodes,
and of links between sites, which are represented as directed edges. There is
a particular input site with a continuous inflow. The production at each site
runs continuously at some rates that are bounded by the maximum production
rates and subject to suitable constraints. The processed product of each site is
continuously distributed to the direct neighbors for further processing according
to fixed distribution rates. Moreover, there is an output site with a continuous
output which is computed in some suitable way. A production network is called
stable if the quantity of products at each site is bounded all the time. In [4] con-
ditions were derived by mathematical systems theory, which guarantee stability
of the network. The calculation of these conditions is based on the work [5–7].

In the present paper, the continuity is replaced by stepwise input, production,
transportation, and output. To take into account dynamic changes of the input,
the input flow is not assumed to be constant. Moreover, the production rates
� The authors would like to acknowledge that their research is partially supported

by the Collaborative Research Centre 637 (Autonomous Cooperating Logistic Pro-
cesses: A Paradigm Shift and Its Limitations) funded by the German Research Foun-
dation (DFG).

17

are not determined uniquely, but may vary within certain bounds (Section 2).
The discrete production networks are modeled in a graph-transformational way
as communities of autonomous units [8–11] in Section 3. These rule-based and
visual models allow one to use graph-transformational tools like GrGen.NET to
simulate production networks in such a way that production processes are not
only statistically analyzed, but also visualized displaying their smooth running
or the overflow of bottlenecks (Section 4). Each production site becomes a unit
that can act independently of the other sites within certain bounds. This allows
one to use decentralized decision criteria for the choice of the production and
distribution rates; however, this aspect will not be further addressed in the paper,
being a subject of future work.

If the input rate is constant and the production rates are chosen exhaus-
tively, meaning that the current quantities are processed completely up to the
maximum production rates in each step, then the production network becomes
deterministic with a unique production process. In this case, the distribution
rates and the input rate induce a system of linear equations. If this linear sys-
tem is solvable, then the production network turns out to be stable, as shown
in Section 5. As this result applies to the graph-transformational model of pro-
duction systems, the investigation introduces a new kind of analytical problems
to the area of graph transformation that may be of interest beyond the topic of
this paper. The question of stability is of similar interest in the discrete case as
in the continuous one, because the quantities left at the production sites may
grow beyond any bound so that their storage can overflow eventually.

Summarizing, the paper is structured in the following way. The discrete vari-
ant of production networks and processes is introduced in Section 2. The visual
and rule-based models of production networks are specified in Section 3 in form
of communities of autonomous units. Section 4 describes an implementation of
our production networks in the graph transformation engine GrGen.NET that
gives some first ideas of the potentials of the visual modeling. In Section 5, a
sufficient condition for the stability of deterministic production networks is given
based on the solvability of a system of linear equations which is induced by the
distribution rates and the input quantity. Section 6 concludes the paper.

2 Production Networks and Production Processes

In this section, the notion of production networks and their processes is intro-
duced where the input, processing, flow and output of material are not continu-
ous, but happen step-by-step. A production network consists of production sites,
which are represented as nodes, and of transportation channels between sites,
which are represented as directed edges. There is one input site and one output
site. In each state, the present material at each site is given as a quantity. A
production step changes these quantities by distributing the production rate of
each site to its direct neighbors. Moreover, the input site gets some input in each
step and a part of the production rate of the output site is put out. There may
be a maximum input rate, which can be chosen as ∞ if no bound is assumed.

18

The same applies to the production rates. The distribution at a site is done
according to a distribution vector, the entries of which specify which fraction of
the production rate is moved to which neighbor site. The distribution vectors of
all sites form a distribution matrix. A production process starts with the initial
site quantities and records the changes of site quantities depending on the input,
the production rates and the distribution matrix in each step.

Let N denote the set of natural numbers, N>0 denote the set N\{0} and let
[k] denote the subset {1, . . . , k} of N. The set of real numbers is denoted by R;
we use R+ to describe the set of non-negative real numbers with 0. Moreover,
〈X, Y 〉 denotes the set of mappings from a set X to a set Y .

SAMPLE

Graph:

G = 1

2

3

4

Distribution matrix:

d =

⎛
⎜⎜⎝

0 .5 .5 0
.25 0 .5 .25
.75 0 0 .25
0 0 0 0

⎞
⎟⎟⎠

Maximum production rate max

and initial quantity q(0):

max =

⎛
⎜⎜⎝

3.2
1.6
2.4
1

⎞
⎟⎟⎠ q(0) =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠

Maximum input rate maxin:

maxin = 1

Fig. 1. An example of a production network

Definition 1 (Production Network).
A production network PN consists of

– a simple directed graph G = ([n + 1], E) with E ⊆ [n + 1] × [n + 1], the
input site 1 and the output site n + 1,

– an initial site quantity q(0) : [n + 1] → R+,
– a maximum input rate maxin ∈ R+ ∪ {∞},
– a maximum production rate max : [n + 1] → R+ ∪ {∞}, and
– a distribution matrix d : [n+1]×[n+1] → R+ with

∑
j∈[n+1]

d(i, j) = 1 for i ∈

[n],
∑

j∈[n+1]

d(n+1, j) ≤ 1 and d(i, j) = 0 for all (i, j) ∈ [n+1]× [n+1]−E.

19

2.1 Example

A sample production network is given by the components of Figure 1.

A production network specifies stepwise production processes which go on
forever. If one assumes that the input rates and the production rates can be
randomly chosen (within certain limits) and that the output is always the part
of the production rate of the output site which is not distributed to other sites,
then one gets the following production processes.

Definition 2 (Production Process).
A production process pp (in PN) consists of

– an infinite sequence of input rates in : N>0 → R+,
– an infinite sequence of production rates p : N>0 → 〈[n + 1], R+〉,
– an infinite sequence of output rates out : N>0 → R+, and
– an infinite sequence of site quantities q : N>0 → 〈[n + 1], R+〉

subject to the following production process conditions for all k ∈ N>0 :

in(k) ≤ maxin, (1)
p(k) ≤ min(q(k),max), (2)

q(k)(j) =

{
in(k) + y if j = 1
y otherwise

(3)

where y =
(∑

i∈[n+1]

d(i, j) · p(k)(i)
)

+ q(k − 1)(j) − p(k)(j),

out(k) =
(

1 −
∑

j∈[n+1]

d(n + 1, j)
)
· p(k)(n + 1). (4)

The first condition makes sure that no input rate exceeds the maximum input
rate. The second condition requires that the processed quantity in every step is
a part of the present quantity. The third condition describes the present site
quantity after every step as the site quantity before the step diminished by the
production rate and expanded by the quantities moved from other sites. The
latter quantities are given by the fractions of the production rates due to the
distribution factors. The input site gains the input rate in addition. The last
condition fixes the output in each step as the part of the production rate of the
output site that is not distributed to other sites.

To get shorter formulas, we use the following notational conventions for k ∈
N, l ∈ N>0 and i, j ∈ [n + 1].

1. inl = in(l); pil = p(l)(i); dij = d(i, j); outl = out(l); qil = q(l)(i); maxi =
max(i),

2. Ink =
∑

j∈[k]

inj,Outk =
∑

j∈[k]

outj , Qk =
∑

i∈[n+1]

qik where the convention

[0] = ∅ and
∑
j∈∅

= 0 for k = 0 is used.

20

The definition of production processes has some immediate consequences:

(1) If in and p are given in some way, then q and out are uniquely determined
and can be computed due to the required equations.

(2) As a particular case, one may consider constant input rates, e.g., ink =
maxin for all k ∈ N>0.

(3) As a particular case, one may consider exhaustive production rates, e.g.,
pik = min(qi(k−1), maxi) for all i ∈ [n + 1] and k ∈ N>0.

(4) Production networks with constant input rate and exhaustive production
rates have a unique production process. They are further discussed in Sec-
tion 5.

2.2 Example

The production network SAMPLE in Figure 1 may run with constant maximum
input rate and exhaustive production rates. Then there is a unique production
process with output rates computed due to the respective constraints. It is not
difficult to show that the site quantities of this production process never exceed
the maximum production rates, so that the production rates always coincide
with the site quantities.

2.3 Lossfreeness

The production process conditions (see Definition 2) guarantee that no input
material gets lost, because the whole processed material is moved to other sites
and put out in every step. This is formally stated in the following result.

Theorem 1. Qk = Q0 + Ink − Outk for all k ∈ N

As this is easily proved by induction, the proof is omitted.

3 Production Networks as Communities of Autonomous
Units

In this section, production networks are modeled as communities of autonomous
units in such a way that the production processes of a network correspond to the
runs of the respective community. At first sight, the production community may
look more complicated than the mathematical model. But it is worth noting that
the rule applications in a running step correspond directly to the multiplications
and additions that define a process step in the mathematical model. Moreover,
the rule-based model provides an explicit description of parallel computations.
The main difference between both models is that the rule-based version provides
a visual level.

In the following we use edge-labeled directed graphs, the double pushout
approach (see [12]), for rule application, and communities of autonomous units
as defined in [11] for the structuring of rules.

21

3.1 The Community C(PN)

A production network PN is transformed into the community of autonomous
units in Figure 2. There is an autonomous unit j-prod for each production site
j ∈ [n + 1] and an extra input unit.

C(PN)

aut: input, j-prod, for j ∈ [n + 1]

init: env(PN)

control: (input || 1-prod || . . . || n+1-prod)∞

Fig. 2. The community C(PN) models the production network PN

3.2 Initial environment

The initial environment graph env(PN) integrates all the information of PN .
The graph env(PN) consists of the subgraphs

Gd, 1 mir maxin , and j

quantmax

q(0)jmaxj

for j ∈ [n + 1]

where Gd is obtained from G by replacing each (j, i) ∈ E by

j idji

and the subgraphs share the nodes in [n + 1]. Moreover, we assume that each
node j ∈ [n + 1] is attached with a loop labeled by j. In drawings, the loop is
omitted and its label is placed inside the node. This ensures that the node j can
only be mapped to itself by a graph morphism.

In summary, the node representing the input site is labeled with the number
1; the output site is labeled with n+1. Each site j has an initial quantity qj0

of material, indicated by a pointer edge with the label quant, and a maximum
production rate, denoted by a pointer with the label max.

The maximum input rate maxin is attached to the input site by a special
pointer labeled mir. The connecting edges between sites are labeled with the
distribution rates.

Additionally, if the initial quantities qj0 are replaced by some quantities qj

for j ∈ [n + 1], then the environment graph is denoted by env(PN)(q).

22

input
rule:

1

quantmir

qmaxin

1

quantmir

gain

qmaxin

in−→

in ≤ maxin

control: once

Fig. 3. The unit input

3.3 Autonomous unit input

The unit input in Figure 3 has only one rule, which is applied exactly once in
every execution step of the community. An input value in is chosen by some
mechanism (e.g., this may be some input function like sine or some stochastic
function or even a constant), and a gain pointer is added to the site, with the
value of in attached to it by a loop edge. The choice of in is restricted only
insofar that its value may not exceed maxin .

3.4 Autonomous units j-prod

The parallel execution of the j-prod units (Figure 4) together with input model
one production step of the network.

The tasks of the j-prod units are twofold: On one hand, they manage for each
site the production and the distribution of material to neighbor sites. On the
other hand, the fact that the distribution runs in parallel for all sites at once
makes some cleanup actions necessary in preparation for the next step.

Production and distribution. The first rule of a j-prod unit, produce, chooses
a production rate for site j much in the same manner as the input unit, by some
mechanism. A prod pointer is added to j with the new production rate attached
to it. Here, too, the choice of p is restricted by whichever is the smaller of two
upper bounds: the quantity q of material present at the site and the maximal
production rate maxj .

The second rule in j-prod, transport(i), is a parametric one and it is applied
in one parallel step to each neighbor i of the site j. This rule moves the fraction
dji ·p of the current production rate of material at the site j to a neighboring site
i, where dji is the distribution value inscribed on the edge from j to i. Rather
than adding this value directly to the quantity of material already present at
i, the transported value is instead attached to a gain pointer for the following
reasons.

23

j-prod
rules:

produce: j

max quant

maxj q

j

max quant

prod

maxj q

p−→

p ≤ min(q, maxj)

transport(i): j i

prod

dji

p

j i

prod

dji

gain

p djip

−→

subtract: j

quant prod

q p

j

quant

q − p

−→

add: j

quant gain

q x

j

quant

q + x

−→

control: produce;
∑
i

transport(i); subtract ; add !

Fig. 4. The unit j-prod

24

Cleanup and update. Depending on the configuration of the network, one
production site j may receive input from many neighbor sites. To avoid conflicts
generated by concurrent access to the quantity value q of j, each source generates
a gain edge at the target site, labeled with the appropriate value. Now in order to
make a next step in the production process possible, a cleanup of sorts needs to
take place; this is the task of the rules subtract and add, which restore the original
pointer configuration and update all values to reflect the changes that have taken
place in the current production step. First, the subtract rule removes the amount
pj of material which is distributed by j in the current production step from the
quantity qj of material present at j, resulting in an intermediate quantity value
q̄j . Implicitly, this behavior also models the output of material from the network:
the difference between pn+1 and the amount of material the site n + 1 sends to
other sites simply disappears from the network. If, in particular, the output site
has no outgoing edges, then its whole production rate leaves the network in
every running step. Additionally, subtract also removes the prod pointer at each
site, so that a new value for pj can be entered into the network in the next
production step. The rule subtract is applied exactly once, after the transport
has been completed and before the application of add. Now, the values in the
gain edges at each site plus the remaining quantity q̄j at the site have to be
consolidated into one single quantity value q′j =

∑
dijpi + q̄j . This is done in

the add rule by picking a random gain edge and adding its value to the existing
quantity: the exclamation mark in the control expression add ! requires that add
must be applied as long as possible, i.e., until no gain edge remains.

3.5 Control condition

The control condition of C(PN) prescribes to execute the input and all of the
j-prod units in parallel (denoted by ‖) and to iterate this ad infinitum (denoted
by ∞).

Summarizing, the following observation relates a running step in the com-
munity with a process step in the mathematical model.

Observation. A running step of the community C(PN) has the form env(PN)(q)
=⇒ env(PN)(q′) where q′ is obtained from q by

q′j = in · δ1j +
∑

dijpi + qj − pj

with δ11 = 1 and δ1j = 0 for j > 1.
As a consequence of this observation, we get the following result.

Theorem 2. Each production process pp in PN with the sequence of site quanti-
ties q : N → 〈[n+1], R+〉 corresponds to an infinite run of the community C(PN)
with the steps env(PN)(qk)=⇒ env(PN)(qk+1) for all k ∈ N and conversely.

This shows that C(PN) models PN correctly.

25

Fig. 5. Community C(SAMPLE) in GrGen.NET: all sites have reached the saturation
point (i.e., the maximal production rate) after 217 steps

4 Visual Simulation

In order to simulate runs on our sample production network as well as larger
production networks, we have implemented the general production community
from Section 3 using the graph transformation engine GrGen.NET (see [13]).

The GrGen.NET graph model is based on typed, attributed, directed multi-
graphs with inheritance. The base types at the core of this model are Node and
Edge, and the primitive attribute data types int, float, double, string, boolean and
object, the latter denoting a .NET object.

We made use of the subpattern matching capability of GrGen.NET, using the
iterated subpattern in order to simulate parallel rule application. GrGen.NET
also does not provide autonomous units; however, it allows to structure rule
application by embedding imperative calls to other rules into the declarative
right-hand-side of a rule. Furthermore, such calls may be controlled using, for
example, regular expressions. We made use of this feature to emulate autonomous
units very closely to our original specification.

The simulation runs very fast, with our example network SAMPLE com-
pleting 217 steps and reaching the maximal production rate at all four sites
in less than 1 millisecond (GrGen gives the time as 0 ms) on an Intel Core i5
M520 CPU with 2.40 GHz and 6 GB of RAM, having found 4340 matches and
performed 4340 graph rule applications in that time.

In order to test run times on larger networks (Figure 6), we have written an
additional graph grammar which creates random production networks for simu-
lation purposes. A graph with 402 nodes is generated in 655 ms; 3000 production
steps are completed after another 21840 ms (i.e., some 21 seconds), with over 4
million matches found and rewrite steps executed in that time.

26

The simulation is valuable as a visual way to model and debug production
networks or detect flaws in existing ones, altering them until they are stable.
Additionally, the declarative nature of graph transformation rules makes the
modeling less error-prone, and the production process model easily scalable, e.g.,
by introducing different material types, variable inflow and other extensions.

Fig. 6. A network with 400 nodes in GrGen.NET after 3000 production steps

5 Deterministic Production Networks and Stability

In practice, a site in a production network has only a bounded storage capacity
so that the question of stability becomes important. A production network is
stable if the site quantities of each production process do not exceed a fixed
bound. It will be shown in this section that deterministic production processes,
which have a constant input rate and exhaustive production rates, are stable if
a certain system of linear equations is solvable.

27

A production network PN is stable if an upper bound vector m : [n+1] → R+

exists such that the following holds for each production process pp with the site
quantity sequence q : N → 〈 [n + 1], R+〉: qik ≤ mi for all i ∈ [n + 1] and k ∈ N.

A production network PN is deterministic if the input rate is constant, i.e.,
ink = in for all k ∈ N>0 and for some in ∈ R+, and if the production rates are
exhaustive, i.e., pik = min(qi(k−1), maxi) for all k ∈ N>0 and i ∈ [n + 1].

Let PN be a deterministic production network, and let its unique production
process have – in addition – a constant site quantity, meaning that there is a
quantity vector m : [n + 1] → R+ with qk = m for all k ∈ N. Let moreover
the vector m be smaller than or equal to the maximum production rate, i.e.
m ≤ max. Consequently, the production rates are also equal to m :

pik = min(qi(k−1), maxi) = min(mi, maxi) = mi.

And with a constant production rate, the outputs become constant:

outk = (1 −
∑

i∈[n+1]

d(n+1)i)p(n+1)k = (1 −
∑

i∈[n+1]

d(n+1)i)mn+1.

Such a network is obviously stable with an upper bound being the site quan-
tities (or more). Moreover, the production process condition 3 in Definition 2
holds, yielding the following equality for the quantities of m:

mj = qjk = in · δ1j +
∑

i∈[n+1]

dijpik + qj(k−1) − pjk

= in · δ1j +
∑

i∈[n+1]

dijmi + mj − mj = in · δ1j +
∑

i∈[n+1]

dijmi

for all j ∈ [n + 1] where δ11 = 1 and δ1j = 0 for j ≥ 2.
If one subtracts the latter sum and denotes the transposed distribution ma-

trix by dt, then one gets
(E − dt)m = in · e1

where E is the identity matrix and e1 the first unit vector.
In other words, a deterministic production network with a constant site quan-

tity m implies that the system of linear equations

(E − dt)x = in · e1

has m as a solution.
Interestingly enough, the considerations work also the other way round mean-

ing that each solution of the system of linear equations given by the constant
input quantity and the constant distribution matrix gives rise to stable produc-
tion networks, provided that the initial quantity is bounded by the solution and
the maximum production rate equals the solution or is greater.

28

5.1 Example

Solving the linear system (E − dt
SAMPLE)m = in · e1 for the deterministic pro-

duction network SAMPLE from Section 2.2 results in the maximal production

rate vector m = max =

⎛
⎜⎜⎝

3.2
1.6
2.4
1

⎞
⎟⎟⎠.

Now we state our second main result, which guarantees stability of production
networks under a sufficient condition.

Theorem 3. Let PN be a deterministic production network and m : [n + 1] →
R+ be a solution of the system of linear equations

(E − dt)x = in · e1

with m ≤ max and q0 ≤ m. Then PN is stable.

Proof. We show by induction that the sequence of site quantities of the unique
production process of PN is bounded by m, i.e. qk ≤ m for all k ∈ N.

Base: q0 ≤ m by assumption.

Step:

qj(k+1) = in · δ1j +
∑

i∈[n+1]

dijpi(k+1) + qjk − pj(k+1) (1)

= in · δ1j +
∑

i∈[n+1]

dij min(qik, maxi) + qjk − min(qjk, maxj) (2)

= in · δ1j +
∑

i∈[n+1]

dijqik + qjk − qjk (3)

≤ in · δ1j +
∑

i∈[n+1]

dijmi (4)

= mj (5)

where equality 1 is the site quantity condition, equality 2 uses the exhaustiveness,
equality 3 follows from the induction hypothesis qk ≤ m and the assumption
m ≤ max, the inequality 4 is again the induction hypothesis, and equality 5
uses that m solves (E − dt)x = in · e1.

With the boundedness of all site quantities, the sum of them over all sites is
also bounded.

29

6 Conclusion

In this paper, we have introduced and investigated a variant of production net-
works with step-by-step production processes. The first main result shows that
production networks can be transformed into communities of autonomous units
such that production processes correspond to infinite runs of the modeling com-
munities. The second main result yields a sufficient criterion for the stability
of deterministic production networks. As this is the very first attempt to relate
production networks and autonomous units, future research should shed more
light on the significance of this approach including the following topics:

1. The stability results may be improved by enlarging the class of production
networks for which sufficient conditions yield stability.

2. One may also look for necessary conditions or even proper characterizations.
3. So far, we have considered only two ways to choose the input rates and the

productions: randomly on one hand and deterministically on the other. An
interesting question is which other control conditions for the input unit and
the production units will do to make proper use of their autonomy.

4. To improve the behavior of a production network one may allow variable
distribution rates so that further circumstances like waiting time can be
considered.

5. To make the model more flexible, one may enhance the notion of production
networks by relaxing and modifying various assumptions like the following:
– There may be more than one input site and one output site.
– There may be an explicit control of the output rates.
– There may be different kinds of materials and information flows through

the network rather than a single homogeneous matter.
– There may be particular time conditions for production and transporta-

tion at each site rather than the homogeneous step assumption.
We expect that modifications like these will not be difficult to get.

6. Another possible modification would be to assume that the produced and
distributed material consists of a number of atomic items such that only
integer division is possible. In this case, the graph-transformational model
may be particularly suitable as the atomic items could be represented by
atomic graph components explicitly.

7. In some applications, it may not be realistic to assume that the underlying
network is invariant, but it may grow or shrink due to economic circum-
stances. Again, the graph-transformational model may help to dynamize the
structure of the production networks because the local insertion and removal
of nodes and edges is just what happens if rules are applied.

References

1. Hans-Peter Wiendahl and Stefan Lutz. Production in Networks. Annals of the
CIRP- Manufacturing Technology, 51(2):1–14, 2002.

30

2. Bernd Scholz-Reiter, Michael Görges, Thomas Jagalski, and Afshin Mehrsai. Mod-
elling and Analysis of Autonomously Controlled Production Networks. In Proceed-
ings of the 13th IFAC Symposium on Information Control Problems in Manufac-
turing (INCOM 09). Moscow, Russia, pages 850–855, 2009.

3. Bernd Scholz-Reiter, Afshin Mehrsai, and Michael Görges. Handling the Dynamics
in Logistics - Adoption of Dynamic Behavior and Reduction of Dynamic Effects.
Asian International Journal of Science and Technology in Production and Manu-
facturing Engineering (AIJSTPME), 2(3):99–110, 2009.

4. Sergey Dashkovskiy, Michael Görges, and Lars Naujok. Local Input to State Sta-
bility of Production Networks. 2009. To appear in Proceedings of the Second
International Conference, LDIC 2009, Bremen, Germany, August 2009.

5. Sergey Dashkovskiy, Björn S. Rüffer, and Fabian R. Wirth. Small gain theorems
for large scale systems and construction of ISS Lyapunov functions. SIAM Journal
on Control and Optimization, 48(6):4089–4118, 2010.

6. Sergey Dashkovskiy, Björn S. Rüffer, and Fabian R. Wirth. Numerical verification
of local input-to-state stability for large networks. In Proceedings of the 46th IEEE
Conference on Decision and Control, New Orleans, LA, USA, Dec. 12-14, 2007,
pages 4471–4476, 2007.

7. Sergey Dashkovskiy and Björn S. Rüffer. Local ISS of large-scale interconnections
and estimates for stability regions. Systems and Control Letters, 59(3–4):241–247,
2010.

8. Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous units and
their semantics — the sequential case. In A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, and G. Rozenberg, editors, Proc. 3rd Intl. Conference on Graph Trans-
formations (ICGT 2006), volume 4178 of Lecture Notes in Computer Science, pages
245–259. Springer, 2006.

9. Hans-Jörg Kreowski and Sabine Kuske. Autonomous units and their semantics
- the parallel case. In J.L. Fiadeiro and P.Y. Schobbens, editors, Recent Trends
in Algebraic Development Techniques, 18th International Workshop, WADT 2006,
volume 4408 of Lecture Notes in Computer Science, pages 56–73, 2007.

10. Karsten Hölscher, Renate Klempien-Hinrichs, Peter Knirsch, Hans-Jörg Kreowski,
and Sabine Kuske. Autonomous Units: Basic Concepts and Semantic Foundation.
In Michael Hülsmann and Katja Windt, editors, Understanding Autonomous Co-
operation and Control in Logistics – The Impact on Management, Information and
Communication and Material Flow, pages 103–120. Springer, 2007.

11. Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous Units to
Model Interacting Sequential and Parallel Processes. Fundamenta Informaticae,
92(3):233–257, 2009.

12. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-
mentals of Algebraic Graph Transformation (Monographs in Theoretical Computer
Science. An EATCS Series). Springer, 2006.

13. Rubino Geiß and Moritz Kroll. GrGen.NET: A fast, expressive, and gen-
eral purpose graph rewrite tool. In A. Schürr, M. Nagl, and A. Zündorf,
editors, Proc. 3rd Intl. Workshop on Applications of Graph Transformation
with Industrial Relevance (AGTIVE ’07), volume NN of LNCS. Springer, 2008.
http://www.springerlink.com/content/105633/.

31

32

On Decidability of Bigraphical Sorting

Giorgio Bacci1? Davide Grohmann2??

1 Dept. of Mathematics and Computer Science, University of Udine
giorgio.bacci@uniud.it

2 Programming, Logic and Semantics Group, IT University of Copenhagen
davg@itu.dk

Abstract. Bigraphs are a general framework for mobile, concurrent, and
communicating systems. They have been shown to be suitable for rep-
resenting several process calculi formalisms, but despite their expressive
power, in many cases some disciplines on the structure of bigraphs are
needed to faithfully encode the computational model at hand. Sortings
have been proposed as an abstract technique to discipline bigraphs.
In this paper, we study the decidability problem of bigraphical sorting:
to decide whether a bigraph belongs to some sorted bigraph category.
Whilst the general problem is undecidable, we propose a decidable sub-
class of bigraphical sortings, named match predicate sortings, which are
expressive enough to capture homomorphic sortings and local bigraphs.

1 Introduction

Bigraphical Reactive Systems (BRSs) [15] have been proposed as a promising
meta-model for ubiquitous and mobile systems. The states of a BRS are bigraphs.
Like an ordinary graph, a bigraph has nodes and edges connecting nodes, but
unlike an ordinary graph, the nodes can be nested inside one another, hence
they allow to represent both locality relationship between entities and (channel)
connections. The dynamics of agents are represented by a set of rewrite rules on
this semi-structured data.

Notably, Bigraphs and BRSs have been used for representing many domain-
specific calculi and models: programming languages, calculi for concurrency and
mobility, context-aware systems and web-services [11,12,3,9,5].

Process models (for example CCS, π-calculus, Ambient calculus) define pro-
cesses syntactically, and in many cases it turns out that the encoding of processes
into bigraphs is not exact, because bigraphs have too many degrees of freedom.
This problem is usually overcome introducing “specialized versions” of bigraphs.
For example, binding bigraphs [11] have been introduced to encode scoping for
binding inputs in π-calculus: they allow for restricting name scope to a specific
portion of a bigraph’s locations. Many other variants have been proposed in liter-
ature, and almost all of them uses sorting techniques in achieving this. Example
of sortings are homomorphic [15] and many-one sortings [12].
? Work funded by MIUR PRIN project “SisteR”, prot. 20088HXMYN.

?? Work partially funded by CosmoBiz project supported by ITU of Copenhagen and
the Danish Research Council for Technology and Production. Grant no. 274-06-0415.

33

The main drawback in using sorting techniques is that each time a sorting
is introduced, the theory of bigraphs must be redefined anew. Recently, Debois
and coauthors [4] generalized the ad hoc constructions providing the definition
of a class of sorted categories for which the behavioral theory of pure bigraphs
is preserved, the so called predicate sortings. Intuitively predicate sortings rule
out bigraphs that do not satisfy the predicate P .

Although using predicate sortings provides a general construction which sus-
tain the behavioural theory of bigraphs, this technique has a main drawback:
the systematic construction makes sorted categories very difficult to handle, due
to the fact that their objects are defined as pairs of sets of morphisms from
the original category, closed by prefix and suffix composition, and most of the
difficulties arise when one wants to implement effectively such construction.

In order to overcome these difficulties, but at the same time keeping the
technique as general as possible (we do not want to define sortings by hand),
we propose to look at predicate sortings from a different point of view. The
sorted category will not be constructed at all, but we will use sortings as a
way of (automatically) checking if a morphism of the original category has a
“counterpart” in the sorted category and, more importantly, if compositions in
the non-sorted category are admissible in its sorted variant.

The aim of this paper is to investigate the decidability of the proposed check-
ing procedure for sortings. It turns out that this procedure is undecidable in gen-
eral, even if we restrict only on bigraphical sortings. For this reason we propose a
decidable subclass of bigraphical predicate sortings, named match predicate sort-
ings, for which there exists an effective algorithm to check if a bigraph “belongs”
to the sorted category.

The key idea relies on the factorization theorem [4], which characterizes de-
composable predicates as those that disallow factorisation by a given set of mor-
phisms. Intuitively, given a predicate P such that P (f) holds, there must exists
a set Φ of morphism such that f cannot be decomposed in a form f = g ◦ ψ ◦ h
where ψ is in Φ. Intuiticely, P disallows occurrences of ill-formed morphisms,
which are exactly those in Φ. In bigraphs it turns out to be much more intuitive
to identify occurrences as matches. In this way, (some) decomposable predicates
can be expressed as a set of ill-patterns which cannot be matched in well-sorted
bigraphical morphisms. This choice permits to apply the bigraphical matching
procedure to check whether a (pure) bigraph has a counterpart in the match
sorted category, hence this class is decidable. Notably, this sub-class of sort-
ings captures a good variety of sortings proposed in the literature, for example
homomorphic sortings [15] and local bigraphs [14,16].

Synopsis The paper is structured as follows. In Sections 2 and 3 we recall the
theory of bigraphs and (bigraphical) sortings. In Section 4 we prove the unde-
cidability of the (bigraphical) sorting problem in the general setting. After that,
in Section 5 the class of match predicate sortings is introduced and analyzed for
decidability. In Section 6 we show how to express two relevant sortings intro-
duced in literature as match predicate sortings. Finally, conclusions and ideas
for further developments are in Section 7.

34

RESOLVING A BIGRAPH INTO PARTS

GP : m→n

roots . . .

sites . . .

GL : X →Y

bigraph

place graph link graph

G : 〈m, X〉→〈n, Y 〉

. . . inner names

. . . outer names

v2

v3

0 1

v0

v1

v1

v0

v2

0

v3

1

v1

v3
v0

v2

1

2

x0 x1

y0 y1

21

y0 y1

0

0 x0 x1

22

Fig. 1. Bigraph = Place graph + Link graph (picture taken from [15]).

2 Bigraphs

In this section we recall Milner’s bigraphs [15]. Intuitively, a bigraph represents
an open system: it has an inner and an outer interface to “interact” with sub-
systems and the surrounding environment (see Figure 1). The width of the outer
interface describes the roots, that is, the various locations containing the sys-
tem components; the width of the inner interface describes the sites, that is, the
holes where other bigraphs can be inserted. On the other hand, the names in the
interfaces describe the free links, that is, end points where links from the inner
parameters or/and the external environment can be pasted, creating new links
among nodes. We refer the reader to [15] for a longer description of bigraphs.

In this paper, we use the following terminology and notation. Natural num-
bers are frequently treated as finite ordinals, that is, m = {0, 1, . . . ,m− 1}. We
write S]T for the union of sets assumed to be disjoint. For two functions f and g
with disjoint domains S and T we write f]g for the function with domain S]T
such that (f]g) � S = f and (f]g) � T = g. We write idS for the identity func-
tion on the set S. In defining bigraphs we assume that names, node-identifiers
and edge-identifiers are drawn from three infinite sets, respectively X , V and E ,
disjoint from each other.

The bigraphical category is defined over a signature K of controls with arity
function ar : K → N which identifies the ports ar(k) of a control k ∈ K.

Definition 1 (Interface). An interface is a pair 〈m,X〉 where m is a finite
ordinal (named width) and X is a finite set of names.

Definition 2 (Bigraphs). A bigraph G : 〈m,X〉 → 〈n, Y 〉 compounds a place
graph GP and a link graph GL which describe the nesting of nodes and the

35

(hyper-)links among nodes, respectively.

G = (V,E, ctrl, GP , GL) : 〈m,X〉 → 〈n, Y 〉 (bigraph)

GP = (V, ctrl, prnt) : m→ n (place graph)

GL = (V,E, ctrl, link) : X → Y (link graph)

where V , E are (finite) sets of nodes and edges respectively; ctrl : V → K is
the control map, assigning a control to each node; prnt : m] V → V] n is
the (acyclic) parent map; link : X] P → E] Y is the link map, where P =∑
v∈V ar(ctrl(v)) is the set of ports.

Definition 3 (Bigraph category). The category of bigraphs over a signature
K, denoted as Big(K), has interfaces as objects and bigraphs as morphisms.

Given two bigraphs G : 〈m,X〉 → 〈n, Y 〉, H : 〈n, Y 〉 → 〈k, Z〉, the composi-
tion H ◦G : 〈m,X〉 → 〈k, Z〉 is defined by composing their place and link graphs:

HP ◦GP = (V, ctrl, (idVG
] prntH) ◦ (prntG] idVH

)) : m→ k

HL ◦GL = (V,E, ctrl, (idEG
] linkH) ◦ (linkG] idPH

)) : X → Z,

where V = VG] VH , ctrl = ctrlG] ctrlH , and E = EG] EH .

An important operation on bigraphs, is the tensor product. Intuitively, this
operator puts “side by side” two bigraphs, i.e., given G : 〈m,X〉 → 〈n, Y 〉 and
H : 〈m′, X ′〉 → 〈n′, Y ′〉, their tensor product is G ⊗ H : 〈m + m′, X] X ′〉 →
〈n+ n′, Y] Y ′〉 defined when name sets X,X ′ and Y, Y ′ are pairwise disjoint.

As shown in [15], all bigraphs can be constructed by composition and tensor
product from a set of elementary bigraphs:

– 1: 〈0, ∅〉 → 〈1, ∅〉 is the barren (i.e., empty) root.
– mergen : 〈n, ∅〉 → 〈1, ∅〉 merges n roots into a single one.
– γm,n : 〈m + n, ∅〉 → 〈n + m, ∅〉 is a symmetry, that swaps the first m roots

with the following n roots.
– /x : 〈0, {x}〉 → 〈0, ∅〉 is a closure, that is it maps x to an edge.
– y/X : 〈0, X〉 → 〈0, {y}〉 substitutes the names in X with y, i.e., it maps the

whole set X to y. Notice that X can be the empty set, i this way y is linked
to nothing and it is said to be idle.

– K~x : 〈1, ∅〉 → 〈1, {x1, . . . , xn}〉 is a control which may contain other bigraphs,
and it has ports linked to the name in ~x = x1, . . . , xn.

A bigraph is said a renaming if it is of the form x1/{y1} ⊗ · · · ⊗ xn/{yn}
(abbreviated to ~x/~y, where ~x = x1, . . . , xn and ~y = y1, . . . , yn); a permutation if
it is formed by composition and tensor product of symmetries; a prime when it
has no inner names and its outer width is 1, a discrete when its link map is a
bijection. Two useful variants of tensor product can be defined using tensor and
composition: the parallel product, denoted as G ‖ H, merges shared outer names
of G and H, the merge product written G | H, which moreover merges all roots
in a single one is defined as mergen ◦ (G ‖ H) (with n outer width of G ‖ H).

36

3 Sortings

When one is adopting the bigraphical framework for defining algebraic models
or programming languages, it turns out that such framework is too general and
one has to discipline it with some constraints to fit precisely the problem at
hand. To this end, general and powerful techniques, named sortings, have been
developed by Debois and coauthors in [4].

Definition 4 (Sortings). A sorting of a category C is a functor F : X → C,
that is faithful and surjective on objects. We call X sorted category.

Intuitively, a sorting functor F defines X by refining the category C. The ob-
jects (i.e., interfaces) of X carry more information than the original ones, thus
morphism (i.e., system) composition turns out to be finer-grained. This yields
back a category X where morphisms are more informative than those in C in
the sense that, some compositions in C no longer hold in X.

Due to the very general nature of sorting refinements needed by each par-
ticular application, it could be tricky to construct a sorting directly using the
definition above. Moreover, each time a sorting is adopted the behavioral the-
ory of bigraphs must be redeveloped. Debois observed that most sortings in the
literature on bigraphs are actually means of banning particular morphisms from
the original category. In each of these cases, it is possible to identify a predi-
cate on the morphisms of the category in question, which holds precisely at the
morphisms in the image of the sorting functor. Unfortunately a predicate on
morphisms might not give rise to a subcategory, indeed we might have compos-
able morphisms which individually satisfy the predicate, but whose composite
does not. Debois proved that for the construction of such a sorted category it is
sufficient that the predicate is decomposable.

Definition 5 (Decomposable predicate). A predicate P on morphisms of a
category is decomposable iff P holds on identities and P (f ◦ g)⇒ P (f)∧ P (g).

Notably, the class of decomposable predicates can be characterized as those
morphisms that disallow factorization by a given set of morphisms.

Theorem 1 (Factorization, [4, Proposition 14]). A predicate P on mor-
phisms of a category C is decomposable iff there exists a set of morphisms Φ
such that P (f) holds iff for any g, ψ, h we have f = g ◦ ψ ◦ h implies ψ /∈ Φ.

In [4] it is also given a method to systematically construct a well-behaved
sorting for any decomposable predicate.

Definition 6 (Predicate Sorting). Let C be a category and let P be a decom-
posable predicate on the morphisms of C. The predicate sorting SP : X→ C is
defined as follows. The category X has pairs (X,Y) as objects, where, for some
object C of C, X is a set of C-morphisms with codomain C and Y is a set of
C-morphisms with domain C, subject to the following conditions.

idC ∈ X
idC ∈ Y

f ∈ X ∪ Y ⇒ P (f)
f ∈ X, g ∈ Y ⇒ P (g ◦ f)

g ◦ f ∈ X ⇒ g ∈ X
g ◦ f ∈ Y ⇒ f ∈ Y .

37

There is a morphism f : (X,Y)→ (U, V) whenever the following holds.

f ∈ Y ∩ U x ∈ X ⇒ f ◦ x ∈ U v ∈ V ⇒ v ◦ f ∈ Y .

Proposition 1. Let P be a decomposable predicate on a category C. The image
of the predicate sorting SP is precisely the set of morphisms satisfying P .

All the above definitions and results apply naturally to the bigraph category.

4 Undecidability of bigraphical sortings

In this section, we focus our attention on the undecidability issues of predicate
sortings and in particular for the case of bigraphical sortings.

Looking at the Definition 6, it is obvious that an exhaustive construction of
a predicate sorted category is unfeasible (one must quantify on all morphisms
to construct an object of the sorted category). Instead, what can be done is not
to establish the decidability of the construction of the category, but looking at
the problem of checking if a given morphism f from the base category has a pre-
image in the sorted one. The key idea behind this approach is to “simulate” the
existence of the sorted category, and checking that each morphism that comes
into play is actually well-sorted.

When a predicate sorting SP : X → C is used, the existence of the pre-
image x = SP (f) in the sorted category X is garanteed whenever P (f) holds by
Proposition 1. Unfortunately, decidability cannot be assumed neither for general
predicate P nor for decomposable predicates, even if we restrict to consider only
decomposable predicates over bigraphical morphisms.

Let us define a decomposable predicate over bigraphs which will be proved to
be undecidable by a reduction from the Post Correspondence Problem (PCP) [17].
We use α, β, γ for words in Σ = {a, b}∗, and ε for the empty word. An instance of
PCP is a set of pairs of words {(α1, β1), . . . , (αn, βn)} over the two-letter alpha-
bet {a, b} (that is, αi, βi ∈ Σ). The question is whether there exists a sequence
i0, i1, . . . , ik (1 ≤ ij ≤ n for all 0 ≤ j ≤ k) such that αi0 · . . . ·αik = βi0 · . . . · βik ,
where · denotes word concatenation.

Let K = {list : 0, pair : 0, a : 0, b : 0} be a bigraphical signature of 0-arity con-
trols. Any word γ ∈ Σ can be represented in Big(K) by means of the encoding
wrd : Σ → Big(K), pairs of words by pair : Σ ×Σ → Big(K) and n-length lists
of word pairs by lstn : (Σ ×Σ)n → Big(K) defined as follows:

wrd(ε) = 1, wrd(a · γ) = a ◦ wrd(γ), wrd(b · γ) = b ◦ wrd(γ),

pair(α, β) = pair ◦ (wrd(α) | wrd(β)),

lstn((α1, β1), . . . , (αn, βn)) = list ◦ (pair(α1, β1) | · · · | pair(αn, βn)).

Proposition 2. Let ΦPCP be the following a set of morphisms in Big(K):

ΦPCP = {lstn((α1, β1), . . . , (αn, βn)) | (α1, β1), . . . , (αn, βn) ∈ PCP}

38

then the set U below is a decomposable and undecidable predicate over Big(K).

U = {f morphism of Big(K) | ∀g, φ, h. f = g ◦ φ ◦ h⇒ φ /∈ ΦPCP }

Proof. By Theorem 1, U is a decomposable predicate. Let us prove its undecid-
ability. By contradiction, assume U to be decidable, hence the characteristic func-
tion PU for U , defined as P (u) = 1 if u ∈ U , P (u) = 0 otherwise, must be com-
putable. This obviously contradicts the fact that PCP is undecidable, since an al-
gorithm for PU will decides also PCP because for u = lstn((α1, β1), . . . , (αn, βn)),

PU (u) = 0 ⇐⇒ u /∈ U ⇐⇒ ((α1, β1), . . . , (αn, βn)) ∈ PCP

Notice that u has an obvious occurrence of a morphism ψ ∈ ΦPCP , that is, ψ = u
since u = id ◦ u ◦ id. ut

Theorem 2. Let SP : X→ C be a predicate sorting over a decomposable pred-
icate P . The problem of checking if a given morphism f in C has a pre-image
x = SP (f) in the sorted category X is undecidable.

Proof. It follows immediately from Propositions 1 and 2. ut

As a corollary, checking the existence of a sorted pre-image is undecidable.

Corollary 1. Let S : X → C be sorting. The problem of checking if a given
morphism f in C has a pre-image x = S(f) in X is undecidable.

5 Match predicate sortings

In this section, we introduce a characterization of a decidable class of bigraphical
sortings, which turns out to be a proper subclass of the predicate sortings.

Following the observations that drove the definition of predicate sortings
of Debois and coauthors, that is, that most sortings in literature are actually
defined for banning particular ill-formed patterns, we propose to identify the
notion of pattern occurrence with that of pattern match occurrence. A bigraph
G has a match within a bigraph H if and only if H = F ◦ (G⊗ idX)◦E for some
name set X and bigraphs F,E. The problem of finding a match of a bigraph
into another was investigated in [2] where and inductive characterization of this
problem was proposed and a resolutive algorithm is given.

This scenario suggests the definition of a family of decomposable predicates
based on the bigraphical matching problem.

Definition 7 (Match predicate). Let R be a recursive set of bigraphs. We
say that PR is a match predicate with respect to the set R, if for every bigraph
G, PR(G) holds iff every R ∈ R does not have a match in G.

Proposition 3. Any match predicate is a decomposable predicate.

39

Proof. Let R be a set of redexes and P its match predicate. Now, suppose
by absurdity that P is not decomposable. So there exist two bigraphs such
that P (G ◦H) holds and one between P (G) or P (H) does not. Suppose P (H)
does not hold (the other case is analogous), this means that there exist C,D
such that H = (id ⊗ C) ◦ (id ⊗ R) ◦ D, for some R ∈ R. Therefore G ◦ H =
(G◦(id⊗C))◦(id⊗R)◦D is a match of R in G◦H, an absurd by hypothesis. ut
Hence, the class of match predicates is a proper subclass of decomposable pred-
icates, and it is decidable by means of the matching algorithm.

Proposition 4 (Decidability). Any match predicate is decidable.

Proof (Sketch). Let G : 〈m,X〉 → 〈n, Y 〉 be a bigraph, we give a decidable deci-
sion procedure for PR(G). Since R is a generic recursive set, it could be infinite
in general, hence it is not be possible to check for all elements of R whether they
have a match within the given bigraph G. Note, however, that G is finite, that
is, it has finite node and edge sets, and finite interfaces as well. Let KG be the
set of controls used by nodes in G, and S the set of bigraphs using only controls
taken from KG and such that they have at most |VG| nodes, |EG| edges, |X|
inner names, |X|+ |P | outer names (where P is the set of ports, hence depends
on the chosen set of nodes and controls), and m, n inner and outer width.

Since the set of nodes VG is finite, KG must be finite (|KG| ≤ |VG|); by a
similar argument also S is finite. The set S contains all the possible bigraphs
such that they have a match in G (the proof is by contradiction and omitted
due to lack of space), by the finiteness of S and by the hypothesis that R is
recursive, the set R∩S is computable and finite. It is not difficult to prove that
PR(G) holds iff R does not have a match in G, for all R ∈ R ∩ S, hence, since
the bigraphical matching problem is decidable [8], PR is decidable as well. ut

Now we specialize the Factorization Theorem 1 in the following sense: given
a recursive set of bigraphs M , the set Φ of unwanted bigraphs is defined from
M as Φ = {m⊗ idX | m ∈M ∧X is a set of names}.
Theorem 3 (Factorization). A predicate P is a match predicate iff there
exists a recursive set of morphisms M such that P (f) holds iff for any g, ψ, h
and any set of names X we have f = g ◦ (ψ ⊗ idX) ◦ h implies ψ /∈M .

Proof. Direct consequence of Proposition 3 and Theorem 1. ut
In this way, deciding if a bigraph G is well-sorted is reduced to decide if no
m ∈ M has a match into G. Moreover, we can use the Proposition 3 in combi-
nation with the Definition 6 to define the bigraphical sorted category. We call
this class of sortings match predicate sortings. Consequence of the decidability
of any match predicate is that the set M is recursive, indeed it is essential to
not contradict Proposition 4. Although not forbidden, M is supposed to con-
tain no identities, otherwise (almost) all bigraphs are sorted out, resulting in a
useless sorting strategy. Finally, our match predicate sortings work up-to tensor
product with identities, i.e., the unwanted bigraphical structures are “homset
independent”, indeed a match can be found in any context, so we cannot force
the decomposition to work only with some particular interfaces.

40

6 Sortings in literature and their decidability

In order to investigate the expressive power of our decidable class of sortings,
we analyze some sortings introduced in literature. We focus our attention on the
sortings shown in [7, Table 6.1], which are replaceable by a predicate sorting.
In particular, we consider homomorphic sortings [15] and the bigraph’s variant
known as local bigraphs [14,16]. In this section we show that each decomposable
predicate used in [7] can be characterized as a match predicate of Definition 7.
Notice that the construction of the sorted category is left unchanged because
match predicates are decomposable by Proposition 3.

6.1 Homomorphic sortings and CCS

Firstly, we recall homomorphic sortings as given in [15] with the variants of [7]3.
In order to exemplify the use of the match predicate sortings, we also recall the
encoding of CCS [13] into bigraphs proposed by Milner in [15] which adopts a
particular homorphic sorting.

We start giving the definition of place-sorted bigraph.

Definition 8 (Place-sorted interface). Let Θ be a set of sorts. An interface
I = 〈m,X〉 is Θ-place-sorted if it is enriched by ascribing a sort to each place
i ∈ m. If I is place-sorted, we denote its underlying unsorted interface by U(I).

We denote by Big(K, Θ) the category in which the objects are place-sorted
interfaces, and each morphism G : I → J is a bigraph G : U(I)→ U(J).

Such definition refines only the objects of the bigraph category, the next one is
cutting down some morphisms (i.e., bigraphs).

Definition 9 (Place-sorting). A place-sorting is a triple Σ = {K, Θ, Φ},
where Φ is a condition on the place graph of Θ-sorted bigraphs over K. The con-
dition Φ must be satisfied by identities and preserved by composition and tensor.

A bigraph in Big(K, Θ) is Σ-place-sorted if it satisfies Φ. The Σ-sorted bi-
graphs form a sub-category of Big(K, Θ) denoted by Big(Σ).

Notably, Milner in [15, Proposition 10.3] shows that U can be extended to a
functor U : Big(Σ) → Big(K, Θ) which is surjective on objects and faithful,
and hence a sorting by Definition 4.

Due to the very general nature of place-sorting, Milner defines a particular
class of such sortings, named homomorphic sortings.

Definition 10 (Homomorphic sorting). A place-sorting Σ = {K, Θ, Φ} is
an homomorphic sorting if the condition Φ assigns a sort θ ∈ Θ to each control
in K by means of a surjective function sort : K → Θ and it also defines a parent
map prntΘ : Θ → Θ over sorts. (We impose that Θ has a least two elements4.)

In a bigraph G, via its control map, the sort assignment to K determines a
sort for each node. The Φ requires that, for each site or node w in G with sort θ:
3 The variants are quite technical and do not change the resulting sorted categories.
4 Otherwise the homomorphic sorting sorts out no bigraph, hence it is useless.

41

alt
get

alt

send get

x y

Fig. 2. A bigraph encoding the CSS process x.0 | (x̄.0 + y.0).

1. if prntG(w) is a node then its sort is prntΘ(θ);
2. if prntG(w) is a root then its sort is θ.

As already mentioned, the translation of (finite) CCS in bigraphs provides
a interesting non-trivial example of homomorphic sorting. Suppose a universal
set of name N and let x, y, z, . . . range over N , whilst P,Q range over processes
and A over summations. The CCS syntax is

P ::= (νx)P | P | P | A
A ::= 0 | x.P | x̄.P | A+A .

Intuitively 0 denotes termination. (νx)P means that the name x is restricted in
P . x.P and x̄.P are the input and output actions respectively. Finally, | is the
parallel composition and + the non-deterministic choice. The set of free names is
composed by all names of the process not under the scope of a ν. The processes
are taken up-to the following structural equivalence (≡) [15]: ≡ contains the
α-equivalence on processes, | and + are commutative and associative under ≡,
and the following rules hold

A+ 0 ≡ 0 (νx)(A+ α.P) ≡ A+ α.(νx)P if α ∈ {y, ȳ} and x 6= y

(νx)(νy)P ≡ (νy)(νx)P (νx)P ≡ P if x /∈ fn(P)
(νx)(P | Q) ≡ P | (νx)Q if x /∈ fn(P) .

Notice that P | 0 6≡ P , but we can prove that they are bisimilar.
Now we introduce the homorphic sorting for encoding CCS into bigraphs.

ΣCCS = ({a, p}, {alt : 0, get : 1, send : 1}, Φ)

where a, p are types representing “summations” and “processes”. The control alt
encodes a summation and the controls get and send denote input and output
actions. The condition Φ assigns the type a to alt and p to both get and send. Φ
also imposes an alternation of controls of type a and p in the place graphs, i.e.,
prntΘ(a) = p and prntΘ(p) = a. Both composition and tensor preserves Φ.

The translation of a CCS process into a bigraphs is defined as follows. We map
processes into ground homset having a single root typed with p, i.e., ε→ 〈p, X〉,
and analogously summations into ε → 〈a, X〉. In order to do this we define two

42

alt
alt k

k′

xy

k, k′ ∈ {get, send}

Fig. 3. The ill-bigraphs used to define a match predicate sorting for the CCS.

translation operators PX [·] and AX [·] each indexed on a (finite) set of names X.
They are defined by mutual recursion:

PX [(νx)P] = /y ◦ PX]{y}[P{y/x}] AX [0] = X | 1
PX [P | Q] = PX [P] | PX [Q] AX [a.P] = (getx | idX) ◦ PX [P] (x ∈ X)
PX [A] = (alt | idX) ◦ AX [A] AX [ā.P] = (sendx | idX) ◦ PX [P] (x ∈ X)

AX [A+B] = AX [A] | AX [B] .

As an example consider the CSS process x.0 | (x̄.0 + y.0), its translation in a
bigraph is depicted in Figure 2.

In order to construct a predicate from a homomorphic sorting, it is sufficient
to restrict the condition of Φ to consider just 1. and dropping 2., indeed we can
focus only on constraining the internal components (i.e., nodes) of the bigraph.
The roots belong to the interfaces, and those are refined automatically by the
predicate sortings (see Definition 6).

The predicate constructed by Debois in [7] is the following.

Definition 11. Let Σ = {K, Θ, Φ} be a homomorphic sorting, and let prntΘ be
the parent maps on sorts defined by Φ. The predicate PΣ holds on a bigraph G
iff whenever the control of a node v in G has sort θ ∈ Θ and w = prntG(v) is a
node, then the control of w has sort prntΘ(θ).

On such definition, it is easy to yield a “negative” version of the predicate by
means of the Factorization Theorem 1: the set of unwanted bigraphs Φ can be
constructed by complementing the condition 1.. This observation also suggests
a way of deriving a match predicate by means of our Factorization Theorem 3.

Definition 12. Let Σ = {K, Θ, Φ} be a homomorphic sorting, and let prntΘ be
the parent maps on sorts defined by Φ. The match predicate P (MΣ) for Σ can
be defined on the set of bigraphs MΣ below and by using the Theorem 3.

MΣ , {(K~x ⊗ id~y) ◦H~y | K,H ∈ K ∧ prntΘ(sort(H)) 6= sort(K)} (1)

It is trivial to prove that the meaning of the two predicates coincides, indeed if a
match exists condition 1. is violated, otherwise it does not hold. It is important
for decidability to notice that the set MΣ defined in equation (1) is finite.

In the case of CCS, the set of undesired graph MΣCCS
must contain the

bigraphs which has ill-nested controls. In particular, we should forbid the nesting

43

of a a-typed control into another a-typed one (analogously for the type p). In
other words this means that we do not allow the nesting of two consecutive alt
nodes or two send and/or get nodes. Formally, the set of ill-formed bigraphs for
the match predicate sorting are defined below and depicted in Figure 3.

MΣCCS
=

{
alt ◦ alt, (getx ⊗ id{y}) ◦ gety, (getx ⊗ id{y}) ◦ sendy,

(sendx ⊗ id{y}) ◦ gety, (sendx ⊗ id{y}) ◦ sendy

}
.

The following result follows directly from the above considerations.

Theorem 4. Homomorphic sortings correspond exactly to match predicate sort-
ings over the predicate MΣ.

Proof. It follows from the characterization given in [7, Section 6.3] and by the
fact that PΣ = MΣ . ut

Remarkably, homomorphic sortings are of particular interest in the setting of
bigraphical encoding of process algebras, in fact, they have been employed in the
encoding of π-calculus variants [18] (cfr. Jensen [10]), but also in the definition
of variants pure bigraphs, e.g. kind bigraphs [6].

Corollary 2. Homomorphic sortings are decidable.

Proof. Direct consequence of Theorem 4 and Proposition 4. ut

6.2 Local bigraphs

In this section first we recall Milner’s local bigraphs [14,16] and then we discuss
how to use a match predicate sorting on (pure) bigraphs to catch local bigraphs.

Intuitively, a local bigraph is like a standard (pure) bigraph but it has names
which are deeply connected with placing, i.e., there is a precise scoping rule:
linking must respect the nesting of nodes. An example of a local bigraph is
shown in Figure 4, Note that inner names are “localized” on the bigraph’s sites
and outer names on the roots.

Let K be a binding signature of controls, and ar : K → N × N be the arity
function. The arity pair (h, k) (often written as h → k) consists of the binding
arity h and the free arity k, indexing respectively the binding ports and the free
ports of a control.

Definition 13. A local interface is a list (X0, . . . , Xn−1), where n is the width
and Xis are disjoint sets of names. Xi represents the names located at i.

Definition 14. A local bigraph G : (~X) → (~Y) is defined as a (pure) bigraph
Gu : 〈| ~X|,⋃ ~X〉 → 〈|~Y |,⋃ ~Y 〉 satisfying certain locality conditions. Let π1 and π2

be the canonical projections of pair components, let P =
∑
v∈V π1(ar(ctrl(v)))

be the set of ports, and let B =
∑
v∈V π2(ar(ctrl(v))) be the set of bindings

(associated to all nodes), the link map is link : X] P → E]B] Y .
The locality conditions are the following:

44

z0 z1 z2

0

v0

v1

0

y0

1

y1

1

v3v2

2

y2

G : ({y0}, {y1}, {y2}) → ({z0}, {z1, z2})

Fig. 4. An example of a local bigraph.

1. if a link is bound, then its inner names and ports must lie within the node
that binds it;

2. if a link is free, with outer name x, then x must be located in every region
that contains any inner name or port of the link.

Definition 15. The category Lbg(K) of local bigraphs over a binding signature
K has local interfaces as objects, and local bigraphs as morphisms. Composition
and tensor product are defined analogously as for (pure) bigraphs.

Local bigraphs have been introduced in literature by Milner for encoding the
λ-calculus [1] into bigraphs and investigating confluence properties for bigraph-
ical reactive systems [16].

In [7] it is given the predicate that follows, and it is proven that predicate
sortings can be replaced with the category of local bigraphs.

Definition 16 ([7, Definition 6.22]). Let Σ be a binding signature. Define
PΣ to be the predicate on the morphisms of Big(U(Σ)) given by PΣ(f) iff in f

“all ports linked to a binding port of a node v lie under v”.

It is straightforward to prove that such predicate is decomposable, but we
want to characterize it as a matching predicate, that is, provide a recursive set of
unwanted redex patterns. Fortunately the predicate PΣ is very simple to falsify,
indeed it is enough to find a match of a redex with the form in (2) below (see also
Figure 5). We denote a node as K(~x)~y, which means that the node has control
K, its free ports are linked to the outer names in ~y, and the inner names ~x are
linked to its binding ports.

(K(~xw~y)~z ‖ id〈1,~b~c〉) ◦ (id〈1,~xw~y〉 ‖ N(~a)~bw~c) (2)

for all controls K,N ∈ Σ. Intuitively, if a bigraph has a match for a redex
with the form in (2), that match is a counterexample for PΣ (the binding port
targeted by w of the K-node has as peer the port linked to w of the another
node N which is not beneath the K-node).

Now we can define the binding match predicate.

45

0

K
0

1

N
1

Fig. 5. A (simplified) example of ill-formed bigraph.

Definition 17. Let Σ be a binding signature and let Rbind be the following set
of bigraphs:

Rbind = {(K(~xw~y)~z ‖ id〈1,~b~c〉) ◦ (id〈1,~xw~y〉 ‖ N(~a)~bw~c) | K,M ∈ Σ}

Then define MΣ as the match predicate defined on the (recursive) set Rbind.

Theorem 5. The category of local bigraphs corresponds to the one obtained by
applying the match predicate sorting on MΣ over the morphisms of Big.

Proof. It follows immediately from the characterization given in [7, Section 6.4]
and by the fact that PΣ = MΣ . PΣ ⊆ MΣ can be proved noticing that any
match of a redex from RΣ in a bigraph f of Big(U(Σ)) is a counterexample
for PΣ(f); whereas MΣ ⊆ PΣ follows immediately from the fact that RΣ has a
redex for any pair of controls in Σ and for any binding port. ut

7 Conclusions

In this paper, we have investigated the decidability problem of (bigraphical) sort-
ings. In particular, we have shown the undecidability of Debois and coauthors’
predicate sortings and then we have identified a proper sub-class of them, named
match predicate sortings, which turned out to be decidable. For the match pred-
icate sortings, we have proposed a characterization that induces the definition
of a decision procedure to check if a given morphism in the unsorted category
has a pre-image into the sorted one, which holds independently from the cho-
sen predicate. The procedure is based on the bigraphical matching problem, for
which a decision algorithm was proposed in [2].

Notably, our match predicate sortings preserve many interesting properties
of predicate sortings, such as the possibility of describing unwanted bigraphs
by means of BiLog formulae. Moreover, we have shown that the match predi-
cate sortings are powerful enough to capture two important bigraphical sortings
proposed in literature: homomorphic sorting and local bigraphs.

As possible future developments, we plan to investigate if other decidable
classes of sortings exist and if there are other (possibly) more efficient algorithms
to decide if a bigraph belongs to a sortings (remark that the matching problem
for bigraphs is NP-complete). Finally, another interesting future work is the
analysis of the problem in a more general setting, not focusing only on bigraphs.

46

References

1. H. Barendregt. The lambda calculus: its syntax and its semantics. Studies in Logic
and the Foundations of Mathematics. North-Holland, 1984.

2. L. Birkedal, T. C. Damgaard, A. J. Glenstrup, and R. Milner. Matching of bi-
graphs. Electr. Notes Theor. Comput. Sci., 175(4):3–19, 2007.

3. L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt, and H. Niss. Bigraphical models
of context-aware systems. In L. Aceto and A. Ingólfsdóttir, editors, Proc. FoSSaCS,
volume 3921 of Lecture Notes in Computer Science, pages 187–201. Springer, 2006.

4. L. Birkedal, S. Debois, and T. T. Hildebrandt. Sortings for reactive systems. In
C. Baier and H. Hermanns, editors, CONCUR, volume 4137 of Lecture Notes in
Computer Science, pages 248–262. Springer, 2006.

5. M. Bundgaard, A. J. Glenstrup, T. T. Hildebrandt, E. Højsgaard, and H. Niss. For-
malizing higher-order mobile embedded business processes with binding bigraphs.
In D. Lea and G. Zavattaro, editors, COORDINATION, volume 5052 of Lecture
Notes in Computer Science, pages 83–99. Springer, 2008.

6. S. Ó. Conchúir. Kind bigraphs. Electr. Notes Theor. Comput. Sci., 225:361–377,
2009.

7. S. Debois. Sortings and Bigraphs. PhD thesis, IT University of Copenhagen, 2008.
http://www.itu.dk/people/debois/pubs/thesis.pdf.

8. A. Glenstrup, T. Damgaard, L. Birkedal, and E. Højsgaard. An implementation
of bigraph matching. IT University of Copenhagen, 2007. http://www.itu.dk/

~tcd/docs/implBigraphMatching.pdf.
9. D. Grohmann and M. Miculan. Reactive systems over directed bigraphs. In

L. Caires and V. T. Vasconcelos, editors, Proc. CONCUR 2007, volume 4703 of
Lecture Notes in Computer Science, pages 380–394. Springer, 2007.

10. O. H. Jensen. Mobile Processes in Bigraphs. PhD thesis, University of Aalborg,
2008. To appear.

11. O. H. Jensen and R. Milner. Bigraphs and transitions. In Proc. POPL, pages
38–49, 2003.

12. J. J. Leifer and R. Milner. Transition systems, link graphs and petri nets. Mathe-
matical Structures in Computer Science, 16(6):989–1047, 2006.

13. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer, 1980.

14. R. Milner. Bigraphs whose names have multiple locality. Technical Report 603,
University of Cambridge, CL, Sept. 2004.

15. R. Milner. Pure bigraphs: Structure and dynamics. Information and Computation,
204(1):60–122, 2006.

16. R. Milner. Local bigraphs and confluence: Two conjectures. In Proc. EXPRESS
2006, volume 175(3) of Electronic Notes in Theoretical Computer Science, pages
65–73. Elsevier, 2007.

17. E. L. Post. Recursively enumerable sets of positive integers and their decision
problems. Bulletin of the American Mathematical Society, 50:284–316, 1944.

18. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

47

48

Generating Instance Graphs from
Class Diagrams with Adaptive Star Grammars

Berthold Hoffmann1 and Mark Minas2

1 Universität Bremen and DFKI Bremen, Germany
2 Universität der Bundeswehr München, Germany

Abstract. In model-driven software engineering, class diagrams are
used to define the structure of object-oriented software and valid object
configurations, i.e., what objects may occur in a program and how they
are related. Object configurations are essentially graphs, so that class
diagrams define graph languages. Class diagrams are declarative, i.e., it
is quite easy to check whether a graph is an instance of a class diagram.
Graph grammars, on the other hand, define a graph language by deriva-
tion and are thus well suited for constructing instance graphs. This paper
describes how a class diagram can be translated into a graph grammar
that defines the same graph language as the original class diagram. Such
a graph grammar may then be used for, e.g., automatically generating
valid object configurations as test cases. In contrast to earlier attempts,
the presented approach allows to translate class diagrams with arbitrary
multiplicities, unique and non-unique associations, composition associa-
tions, and class generalization. This is made possible by using adaptive
star grammars, a special kind of graph grammars.

1 Introduction

The model-driven design of software relies on the precise specification of models,
often with diagrams in the uniform modeling language, uml. Class diagrams are
the sub-language of uml for specifying the structure of object-oriented classes
and possible configurations of objects that are instances of these classes. Config-
urations primarily consist of sets of class instances and links between them. Links
are instances of the class diagram’s associations. Configurations can be consid-
ered as graphs, called instance graphs in the following: each object corresponds
to a node, and each link corresponds to a directed edge where source and target
are used to distinguish the two roles of the (binary) link. The set of all object
configurations that are compatible with a class diagram, therefore, corresponds
to a language of graphs, i.e., a class diagram specifies a graph language.

It is easy to check whether a given object diagram is compatible with a class
diagram. In contrast, constructing sample instance graphs for a class diagram is
rather difficult. This, however, is important to generate test cases for a software
model. In [6], graph transformation rules have been used to do this. Here we use
an adaptive star grammar [3–5] for this purpose. The approach described in [6]
supports only restricted meta models (e.g., class diagrams with constraints): it

49

does not distinguish unique from non-unique associations, considers only very
restricted association multiplicities, and does not cover composite associations.
Adaptive star grammars, as shown in this paper, allow for a fairly straight-
forward treatment of all of these concepts. Moreover, adaptive star grammars
do not need additional control mechanisms like negative application conditions
or prioritizing some rules over others by rule layers as it is necessary in [6].

The rest of the paper is structured as follows. We briefly introduce adaptive
star grammars in the next section, before we recall some properties of uml class
diagrams in Section 3. In Section 4, the main part, the rules generating instance
graphs of class diagrams are defined and explained. The conclusions (Section 5)
mention some related and future work.

2 Adaptive Star Grammars

Graph grammars generalize the idea of Chomsky grammars to graphs: A set of
rules defines how the graphs of the language can be derived by applying them
to a given initial graph.

Node replacement and hyperedge replacement [7] have been studied most
thoroughly as grammars for deriving graph languages. Their rules remove a
nonterminal node, and attach a replacement graph to its neighbor nodes. The
sort (i.e., the label) and the direction of the edge connecting a neighbor to the
nonterminal determine completely how the neighbor is attached to the replace-
ment graph; in hyperedge replacement, the number of neighbors is even fixed for
every nonterminal. Both formalisms specify context-free compositions of graphs
in the sense of [2]; however, they fail to define even simple languages, such as
the class of all graphs. Adaptive star grammars [3] overcome these limitations
by means of a cloning mechanism that makes its rules more powerful.

Let us briefly define the concepts needed; for more detailed definitions, see [5]
and for a more thorough discussion [3].

Graphs. Let the set C of sorts be the disjoint union of finite disjoint sets Ċ
and C̄ for labeling nodes and edges, respectively. We distinguish a subset N ⊆ Ċ
of nonterminal names.

A graph G = 〈Ġ, Ḡ, sG, tG, ˙̀
G, ¯̀

G〉 consists of finite sets Ġ and Ḡ of nodes and
edges, respectively., source and target functions sG, tG : Ḡ → Ġ, and functions
˙̀
G : Ġ→ Ċ and ¯̀

G : Ḡ→ C̄ assigning a sort to each node and edge, respectively.
A node x ∈ Ġ is called nonterminal if `G(x) ∈ N , and terminal otherwise.

For a node x in G, the subgraph consisting of x and its adjacent nodes and
incident edges is denoted by G(x). A border node of x is a node in Ġ(x) \ {x}.
Note that graphs may have several edges with the same source, target, and
label; such edges are called parallel. In the following, we assume that the reader
is familiar with common graph terminology, such as subgraph, disjoint union
and isomorphism.

Rules and Replacement. Adaptive star grammars are based upon a simple
kind of graph transformation that replaces a subgraph G(x) by another graph.

50

For this, define a rule r = 〈y,R〉 to be a pair consisting of a graph R with a
distinguished node y ∈ Ṙ. We call R(y) and R\{y} the left- and right-hand side
of r, respectively.

Let G be a graph with a node x ∈ Ġ such that G(x) ∼=g R(y) for some
isomorphism g. Then the graph H = G[x/g r] is obtained from the disjoint union
of G and R by identifying R(y) with G(x) according to the isomorphism g and
removing x and its incident edges.

Multiple Nodes. To make graphs (and rules) adaptive, we distinguish a sub-
set G̈ ⊆ Ġ of terminal nodes in a graph G as multiple nodes, similar to the set
nodes of Progress [12]. A multiple node x represents any number of ordinary
nodes, which are called clones of x. (The nodes Ġ \ G̈ are called singular.) In
figures, a multiple node is distinguished by drawing it with double lines (see
Example 1 below). A graph that does not contain any multiple node is said to
be singular. Note that nonterminal nodes are always singular.

Cloning. Let G be a graph. A function % : G̈ → N is a replicator for G. The
graph G% is obtained from G by cloning each node x ∈ G̈ according to %, by
replicating x and its incident edges %(x) times. If %(x) = 0, then x and its
incident edges are simply deleted.

Adaptive Star Grammars. Call a graph simple if it contains neither adja-
cent nonterminal nodes nor indistinguishable edges, i.e., parallel edges. A graph
of the form G(x) is a star if it contains neither loops nor parallel edges, such
that x is nonterminal and its border nodes are terminal. An adaptive star rule
over C is a rule r = 〈y,R〉, where R is a simple graph with sorts in C, and R(y)
is a star. A clone of r is a rule 〈y,R′〉 such that R′ is simple, and there is a
replicator % for R such that R′ can be obtained from R% by identifying some of
the border nodes of y with each other (where, of course, only nodes of the same
sort can be identified).

An adaptive star grammar (ASG) is a system Γ = 〈C,P, Z〉, P is a finite
set of adaptive star rules, and Z is the initial star, which has no multiple border
nodes. (All sorts are taken from C.) Given a graph G, we write G =⇒P H if
H = G[x /r] for some node x ∈ G and a clone r of an adaptive star rule in P.
The adaptive star language generated by Γ is the set of all terminal graphs G
that can be derived from Z:

L(Γ) = {G | Z =⇒+
P G and ˙̀

G(x) ∈ Ċ \N for all x ∈ Ġ},

where =⇒+
P denotes the transitive closure of =⇒P .

Late Cloning. In the terminology of [3], these definitions make use of early
cloning, where neither the graphs in derivations, nor the clones of rules contain
multiple nodes. However, it requires to “guess” in advance how many clones of
a multiple node must be made, which is not always adequate. Especially for
constructing derivations, it is better to do cloning as late as possible. In the fol-
lowing, we will use late cloning, a corresponding way of constructing derivations,
which has been considered in [3] as well.

51

A late replicator %̈ : G̈ → N × N sends multiple nodes to pairs of numbers
that represent the numbers of singular and multiple nodes that shall be made of
a multiple node, respectively. The graph G%̈ is an adaptive graph wherein, for
every multiple node x ∈ G̈ with %̈(x) = (n,m), x has n + m clones, whereof m
are designated as multiple.

In order to apply an adaptive rule r = 〈y,R〉 to an adaptive graph G with
late cloning, a combined late replicator %̈ : G(x)∪R(y)→ N×N is used to clone
both G and r so that G(x)% ∼= R′(x) where R′ is simple and obtained from R%

by identifying some of its border nodes. A step using late cloning is denoted
as G ⇒P H again; H is obtained by applying R′ to G%. Like early cloning,
late cloning does not restrict the language of singular graphs generated by an
adaptive star grammar [3]. 3

Example 1 (The Language of Unlabeled Graphs). As an example, consider the
adaptive star grammar Γ which is given by Γ = (C,P, Z), where Ċ = {�,A},
C̄ = {-}, Z = A , and

P =

{
A ::= A , A ::= A , A ::=

}
.

A rule 〈y,R〉 is drawn as R(y) ::= R \ {x}. The grammar derives arbitrary
graphs without loops over the “invisible” sorts � and -, that is, the class of
finite unlabeled graphs. Starting with Z, the first rule makes it possible to add
an arbitrary number of border nodes. The second rule adds edges between border
nodes, and the third removes the nonterminal node.

Let us briefly discuss a major difference between the definition of adaptive
star grammars used here (that has already been introduced in [5]) and the one
in [3]. Rules can be applied to subgraphs G(x) that are not stars, but contain
parallel edges. Note that, although the left-hand side R(y) of an adaptive star
rule r = 〈y,R〉 is a star, cloning it prior to application may involve taking
a quotient that identifies border nodes of y in R% with each other. This may
sound alarming, as it was shown in [4] that quite a similar type of adaptive star
grammars can generate all recursively enumerable languages. However, note that
we restrict this ability to the case where the resulting right-hand side R′ is simple.
In particular, R′ must not contain indistinguishable edges. As a consequence,
adaptive star grammars of the sort defined above can be simulated by ordinary
ones (i.e., those in [3]) by using subsets of C̄ to label edges in stars and turning
every rule into a finite number of rules (corresponding to the allowed quotients).

3 Class Diagrams

Class diagrams are a well-known graphical language of the UML. The focus of
this paper is on the specification of graphs without attributes. Hence, we ignore
3 In that paper, we consider conditions under which a late replicator is minimal ; this

is not necessary here.

52

method and attribute specifications within classes. They can be easily added if
required. Moreover, we ignore associations with cardinality greater than 2 and
newer concepts of class diagrams like association sub-setting or redefinition.

The class diagrams used in this paper consist of classes and (binary) associ-
ations between them. Concrete classes are distinguished from abstract classes.
Each association has a name, and its two end-points carry role names. For sim-
plicity, however, we assume an implicit ordering on the role names, draw associ-
ations as directed edges, and omit role names.4 Each end-point of an association
is equipped with a multiplicity of the form u..v where u ∈ N0 is the lower bound
and v ∈ N∪{∗} the upper bound such that u 6 v if v ∈ N. As usual, ∗ stands for
“infinity”. An association may be declared unique (the default) or non-unique,
indicated by the annotation ’{non-unique}’. We distinguish regular associations
(the default) from composite associations. The latter have a black diamond at
one of their end-points. The multiplicity at this end-point is either 0..1 or 1..1.
The class at the end-point with the diamond is called composite, the class at
the other end-point is called its part. Edges representing composite associations
are always directed towards the part class. A class may be composite and part
of the same composite association at the same time. However, no object can be
part of two objects, and no object is (directly or indirectly) part of itself. Finally,
class diagrams may contain generalization arrows, which point from sub-classes
to super-classes. Each class may have an arbitrary number of sub-classes and
super-classes. However, generalization arrows are not allowed to form cycles. We
usually extend the notion of sub-classes and super-classes to all classes that are
reachable by chains of generalization arrows (including chains of length 0).

A class diagram specifies graphs by the mechanism of instantiation: A node
is an instance of a class iff it is labeled with the class name. An instance of
a class C is called member of C and also of each super-class of C. An edge e
is an instance of an association from a class C1 to a class C2 if e is labeled
with the association label, and if the source and target nodes are members of C1

and C2, respectively. Moreover, each association defines a multiplicity constraint :
Let a be an association from class C1 to class C2 with multiplicities u..v at its
source end-point and multiplicity r..s at its target end-point. The multiplicity
constraint of a is satisfied iff no member of C1 has less than r or more than s
outgoing a-instances as edges and if no member of C2 has less than u or more
than v incoming a-instances as edges.

The graph language specified by a class diagram consists of all graphs that
satisfy the following conditions:

C1: Each node is an instance of a concrete class, and each edge is an instance
of an association.

C2: The multiplicity constraints of all associations are satisfied.
C3: No two instances of any unique association are parallel edges.
C4: The subgraph induced by composite edges (i.e., instances of composite as-

sociations) must be a collection of trees.
4 These directed edges should not be confused with navigation arrows, which solely

represent implementation issues in object-oriented programming.

53

Such graphs are called instance graphs in the following. This definition fol-
lows the UML specification when nodes are considered as objects and edges
as links [11].

4 An Adaptive Star Grammar for Instance Graphs

In the following, we assume an arbitrary, but fixed class diagram. We first de-
scribe how this class diagram can be translated into an ASG defining the same
graph language. The set of terminal node sorts, hence, must consist of the names
of all concrete classes. The set of edge sorts must contain all association names,
but also additional edge sorts that will be used for labeling edges between non-
terminal and terminal nodes. These edge sorts, but also nonterminal nodes sorts,
will be introduced as needed in the following.

The idea of translating a class diagram into an adaptive star grammar defin-
ing the same graph language is to start from a graph (called actual initial graph,
AIG, in the following) that closely resembles the class diagram. We add an ini-
tial rule that derives the AIG from the initial star that consists of just a single
node with a unique nonterminal label. For each concrete class, the AIG contains
a multiple node labeled with the class name. Cloning these nodes in a deriva-
tion creates the instances of the corresponding classes. The AIG’s other nodes
are nonterminal nodes representing the associations of the class diagram: Each
regular association is represented by a single node with a unique nonterminal
label. It is connected to all multiple nodes of those concrete classes that partic-
ipate in the association, possibly by being a subclass of a class at an endpoint
of the association. A set of rules is responsible for eventually creating all edges
representing instances of the association, i.e., links between objects. The rules
make sure that conditions C2 and C3 (see Sect. 3) are satisfied. The construc-
tion is more complicated for composite associations since it must make sure that
condition C4 is not violated. Actually, each connected subgraph of the class di-
agram consisting of composite associations and generalizations only has to be
represented by a nonterminal node with a unique label. Rules must be defined
that create all possible trees consistent with the class diagram.

These constructions are described in the following. But first, we introduce
some notation that makes drawing of rules easier: In rules, corresponding nodes
of the left- and right-hand sides are associated by their positions in the drawing.
Terminal nodes in rules are always unlabeled; on the left-hand side of a rule,
they match terminal nodes with arbitrary labels. Because none of the following
rules introduces new terminal nodes on the right-hand side (new terminal nodes
are rather created by cloning), there is no need for labeling them. Finally, we use
a simplified notation for bundles in graphs: For edge labels a1, . . . , an, bundle

A

· · ·
a1 · · · an is drawn as

a1
· · ·

an

A

, and as
· · ·

A

x if a1 = · · · = an = x.

The next two sub-sections describe the construction for regular associations,
the first one for associations declared “non-unique”, the second for “unique as-

54

sociations”. The presented construction must be repeated for each regular asso-
ciation within the class diagram. Afterwards, we then discuss the construction
for composition associations, and finally present an example.

4.1 Non-Unique Regular Associations

Consider an association

U W
r..s u..v{non-unique}

c
where r, s, u, v ∈ N0, r 6 s, u 6 v

within the class diagram. Classes U and W may be arbitrary classes, U and
W may even reference the same class, or U may be a sub-class of W or vice
versa. We assume the upper bounds s and v to be finite, i.e., different from “∗”.
However, the following construction can be extended easily to the case s = ∗
and/or v = ∗ as we will discuss briefly at the end of this subsection.

Let U and W be the sets of concrete sub-classes of U and W , respectively.
Note that U and W contain U and W , respectively, if they are concrete classes.
Note also that U∩W contains all concrete classes being sub-classes of both U and
W . Each instance of a class in U\W has u..v outgoing, but no incoming c-edges,
each instance of a class in W \ U has r..s incoming, but no outgoing c-edges,
and each instance of a class in W ∩U has u..v outgoing as well as r..s incoming
c-edges. Since the association is non-unique, parallel c-edges are permitted. The
following construction assures these properties.

Let {U1, . . . , Uk} = U\W, {W1, . . . ,Wn} = W\U, and {V1, . . . , Vm} = U∩W.
Note that each of these sets may be empty. Let C be a nonterminal label that is
unique for this c-association, and let {x0, x1, . . . , xv} ∪ {y0, y1, . . . , ys} be a set
of pairwise distinct edge labels. The AIG must contain the following graph as a
subgraph:

U1

...
Uk

V1 · · · Vm

C

W1

...
Wn

x0

x0 y0

y0

The meaning of the edges labeled xk and yi is the following: An xk-edge
connects C with a terminal node that has k outgoing c-edges already, and an
yi-edge connects C with a terminal node that has i incoming c-edges already.
Note that terminal nodes with labels in W ∩ U may have incoming as well as
outgoing c-edges; they may even have c-loops where each loop counts as an
incoming and as an outgoing edge. The number of incoming and outgoing edges
of terminal nodes with labels in W∩U is indicated by two edges labeled xk and
yi, respectively.

We may add another c-edge between two appropriate nodes where the source
node must have k < v outgoing c-edges and the target node i < s incoming c-
edges. This is the task of the following set of productions rC

k,i, 0 6 k < v

55

and 0 6 i < s, that add a new c-edge between two nodes and increment the
“counters” realized by edge labels.

x0

...
xv

y0

...
ys

C
xk yi

rC
k,i

::=

x0

...
xv

y0

...
ys

C
xk+1 yi+1

c

Note that such a rule can also be applied in situations where nodes are connected
with two parallel edges labeled xk any yi. The corresponding border nodes have
to be identified in those cases. A c-loop is added if the two singular border nodes
get identified.

We can stop adding c-edges if there is no xk-edge and no yi-edge with k <
u and i < r; we can then remove the nonterminal node C representing the
association. This is realized by the following final rule r̂C

xu

...
xv

C
...

yr

ys

r̂C

::=

xu

...
xv

...

yr

ys

The presented construction uses the fact that v and s are finite numbers
and different from *. The construction, however, is extended easily to the case
v = ∗ and/or s = ∗. Let us assume just v = ∗. The new meaning of an xu-
edge connecting C with a terminal node is that the terminal node has at least u
outgoing c-edges already. And we change rule rC

u,i, such that it no longer creates
a new xu+1-edge, but an xu-edge again. It is clear that this construction now
creates any number of outgoing c-edges, but at least u, at appropriate nodes.

4.2 Unique Regular Associations

We now consider the slightly different situation with a unique instead of a non-
unique association; the other aspects remain unchanged.

Let C and C̄ be two nonterminal labels that are unique for this c-association,
and let {x, y0, y1, . . . , ys} be a set of pairwise distinct edge labels. The AIG must
contain the following graph as a subgraph:

U1

...
Uk

V1 · · · Vm

C

W1

...
Wn

x

x y0

y0

The meaning of yi-edges is the same as in the previous section, i.e., a terminal
node connected to C with a yi edge means that the terminal node has i incoming
c-edges already. However, we do not count outgoing c-edges. Instead, an x-edge

56

between a terminal node and C means that the terminal node has not yet any
outgoing c-edge.

Since parallel c-edges are prohibited, we cannot create c-edges independently
from each other like in the previous subsection. Instead, we use rules that create
all outgoing c-edges of any singular node in a single derivation step; an x-edge
visits those terminal nodes that receive a bundle of outgoing c-edges to pairwise
distinct nodes visited by yi-edges. We define a rule rC that selects one singular
node visited by an x-edge and some of the terminal nodes visited by yi-edges. The
latter nodes will receive new incoming c-edges. Rule rC , therefore, increments
the “counters” realized by yi-edges:

y0 · · ·
ys

y0

...
ys−1

C
x

rC

::=

y0 · · ·
ys

y1

...
ys

C

C̄

x

x y

The rule adds a new nonterminal node labeled with C̄. The following set of rules
rC̄
k , u 6 k 6 v, adds a bundle of c edges from the node visited by the x-edge to

the k nodes visited by the y-edges.

C̄
...

.

.

.
x

y

y

k nodes
rC̄

k::=
...

.

.

.

c

c

Finally, we can remove the C-node as soon as all terminal nodes connected
to C with an x-edge have been processed by rule rC . This is the task of rule r̂C :

...

yr

ys

C
r̂C

::=
...

Like in the previous subsection, these rules use the fact that the upper mul-
tiplicity bounds v and s are finite and different from *. The case s = ∗ can
be realized similarly to the discussion at the end of the previous subsection. As
an example, see Sect. 4.4. The case v = ∗ is even simpler: The set of rules rC̄

k

gets replaced by a single rule rC̄ that looks like rC̄
u+1; however, one of the border

nodes visited by an y-edge is turned into a multiple node. Hence, this production
can add bundles with an arbitrary number of c-edges, but at least u.

4.3 Composite Associations

With the constructions of the last two subsections, we can translate each class di-
agram whose associations are all regular into an adaptive star grammar defining
the same graph language. Composite associations are special since subgraphs in-
duced by composite edges must be collections of trees (condition C4 in Sect. 3).

57

The ASG, hence, must be able to create all such trees. In order to translate
this part of a class diagram into an ASG, we have to find those classes whose in-
stances can belong to the same tree. This is done by finding the largest connected
subgraphs of the class diagram that are made up by composite associations and
generalizations only. The instance nodes of the classes that belong to the same
connected subgraph may, but need not, belong to the same tree. This can be
represented in the ASG in the following way: We add a new nonterminal node
to the AIG for each of these connected subgraphs and connect this nonterminal
node to each multiple node representing a concrete class within the subgraph.
Then we define star rules that create all possible trees consistent with the class
diagram.

We demonstrate this procedure for just a single composite association as
shown here. However, the construction can be generalized easily to more com-
posite associations in the same connected subgraph.

U W
0..1u..v

c where u, v ∈ N0, u 6 v

Again, classes U and W may be arbitrary classes, U and W may even reference
the same class, or U may be a sub-class of W or vice versa.

Let the sets U, W, {U1, . . . , Uk} = U \ W, {W1, . . . ,Wn} = W \ U, and
{V1, . . . , Vm} = U ∩W be defined as in the beginning of Sect. 4.1. Let C, C̄ be
two nonterminal labels that are unique for this c-association, and let x, y, z be
distinct edge labels. The AIG must contain the following graph as a subgraph:

U1

...
Uk

V1 · · · Vm

C

W1

...
Wn

x

y

z

The nonterminal node C stands for all trees with instances of classes in U∪W as
nodes connected by c-edges; z-edges visit those terminal nodes (roots) that will
“receive” u..v outgoing, but no incoming c-edges. Nodes visited by y-edges (inner
nodes) will “receive” u..v outgoing and possibly one incoming c-edge. Finally,
nodes visited by x-edges (leaves) will “receive” at most one incoming, but no
outgoing c-edge. These properties are assured by the following rules.

C
x y

z

z

rC

::=

C̄

C

C

x yz

x

y

z

x

y
z

C
r̂C

::= 〈〉

The recursive rule rC selects a singular root (visited by a z-edge) and recursively
proceeds with the rest of the roots by adding a new C-node connected to the

58

multiple node representing the rest of the roots. Moreover, rC creates a C̄-node
that will be derived by a rule rC̄

k,i (see below) to a bundle of c-edges from the root
to its children. Those children that are inner nodes become roots of sub-trees,
indicated by the other created C-node. The recursion stops as soon as all nodes
have been processed, represented by rule r̂C , which replaces a C-node by the
empty graph 〈〉.

The rules rC and r̂C make sure that each member of U receives an incom-
ing c-edge. However, this is actually not required by the association. Rule r̄C ,
therefore, allows to turn any inner node into a root and any leaf into a singleton
tree node. This rule must be dropped if the multiplicity of association c is 1..1
instead of 0..1 at the composite end-point.

C

x

x

y

y

z r̄C

::=
C

x

z

y

z

Finally, C̄-nodes must be derived to bundles of u..v many c-edges. This is the
task of the set of rules rC̄

k,i for all i, k ∈ N0 so that u 6 i+ k 6 v:

i nodes

...
...

C̄

zx

x

y

y

k nodes

rC̄
k,i

::=
...

...

c

c

c

c

Note that this construction can be easily extended to the situation where v = ∗.
The set of rules rC̄

k,i must be replaced by the set of rules r′C̄k such that 0 6 k 6 u;
r′C̄k looks like rC̄

k+1,u−k+1, but two of the border nodes, one being visited by an
x-edge, the other with an y-edge, are turned into multiple nodes. Hence, these
rules can add bundles with an arbitrary number of c-edges, but at least u.

4.4 Example

Consider the following class diagram specifying trees where each tree node may
be connected to an E-object. “Manager”-objects of class M are connected to
root nodes:

E Node

Child Parent MIRoot

Leaf Inner Root Single

1..∗
f

0..∗
c

1..∗ 1..1

1..1

g

0..1

We assume that the association f is unique, and that g is not (which is actually
irrelevant for anm-to-1 association). The association c is a composite association.

59

Then the initial rule for the initial star Z, deriving to the AIG, looks as
follows:

Z
init
::=

ELeaf Inner Root Single

M

G

C F

y0x0

x y z y0 y0

x

The rules for the composition c are rC and r̂C as in Sect. 4.3, but without r̄C

since the lower bound of the association at the composite end-point is 1. Because
the upper bound at the part end-point is *, we need the following rules for C̄:

C̄
x y

z

x

r′C̄0::=

c c

c C̄
x y

z

y

r′C̄1::=

c c

c

The rules for association g are constructed as shown in Sect. 4.1 with r =
s = v = 1 and u = 0:

x0

x1

y0

y1

G

x0 y0

rG
0,0

::=

x0

x1

y0

y1

G

x1 y1

g

x0

x1

y1G
y1 r̂G

::=
x0

x1

y1

The rules for association f are constructed as described in Sect. 4.2 with
r = 1, u = 0, s = v = ∗. Because of s = ∗, rule rF differs from the one shown in
Sect. 4.2: an y1-edge means that the connected terminal node has at least one
incoming f -edge. Moreover, as discussed at the end of Sect. 4.2, there is only a
single rule rF̄ creating 0..∗ f -edges from an F̄ -node:

y0 y1

y0

y1

Fx
rF

::=

y0 y1

Fx
y1

F̄
x

y

F
y1 r̂F

::= F̄
yx rF̄

::= f

Fig. 1 shows a sample derivation of an instance graph using these rules. Note
that node labels have been abbreviated by initial letters of class names. The
derivation arrows d1, . . . , d9 do not represent single derivation steps, but have
the following meaning: d1 clones the multiple R-node to a singular as well as

60

Z

⇓
in

it

S R I LG
E C

F
M

y
0

x
0

z y x

y
0

x

y
0

⇒ d
1

S R L I L I R L IG
E C̄ C C

F
M

y
0

x
0

z x y z x y z x y

y
0

y
0

y
0

x

⇒ d
2

S R L I L I L I I L IG
E C̄ C̄ C C

F
M

y
0

y
0

x

y
0

x
0

z
x

y yz

x
y z

x
y z

x
y

⇒ d
3

S R L I LG
E C̄ C̄ C C

F
M

y
0

y
0

x

y
0

x
0

z
x

y z

x
⇒ d

4

SS R

L
I L

E

M

f f

f

c
c

g

c

⇐ d
9

S R

L
I L

E

F̄
M

x
y

y

c
c

g

c

⇐ d
8

S R

L
I L

E

F̄ F

M M

x
y y
1

x
c

c
g

c

⇐ d
7

S R

L
I L

G
E

F
M

y
0

y
0

x

y
0

x
0

c
c c

⇓
d

5

S

R

L
I LG

E
F

M
y

0
y

0

x

y
1

x
1

x
0

c
c

g

c

⇓
d

6

S

R

L
I L

E
F

M
y

0
y

0

x

c
c

g

c

F
ig

.
1
.

A
sa

m
p

le
d

er
iv

a
ti

o
n

o
f

a
n

in
st

a
n

ce
g
ra

p
h

(t
o

b
e

re
a
d

cl
o
ck

w
is

e)

61

another multiple one, clones the I- and L-nodes three times each, and applies
rule rC . d2 clones the topmost I-node to a singular and another multiple one,
deletes the R-, L-, and I-nodes at the bottom (by replicating them 0 times), and
applies rC again after cloning the remaining I- and L-nodes three times each. d3

deletes the 6 lowermost multiple nodes and clones the remaining two multiple
L-nodes to singular ones. d4 applies r̂C twice, deleting the isolated C-nodes, and
then r′C̄0 twice after adapting the rule to the context of the corresponding C̄-
node. d5 applies rG

0,0, and d6 applies r̂G, deleting the G-node. d7 applies rF ; both
the R- and the S-node get visited by y1-edges. d8 deletes the multiple M -node
by replicating it 0 times, and applies r̂F , deleting the F -node. Finally, d9 clones
the S-node twice and applies rF̄ .

5 Conclusions

We have described how class diagrams can be translated into an adaptive star
grammar that defines the same language of instance graphs as the class dia-
gram. The translation process works for all class diagrams using generalizations,
containing unique or non-unique associations and also composite associations.
Associations can have arbitrary multiplicities. We have shown the translation
process explicitly for regular associations with arbitrary multiplicities, and we
have outlined the translation and demonstrated the situation with a single com-
position association.

The presented approach closes the gap between class diagrams as a declara-
tive approach for defining instances and graph grammars providing a construc-
tive definition. That way, techniques available for graph grammars become avail-
able for class diagrams, too. Creating test cases automatically by simply creating
sample derivations is just one example.

The only closely related work, to the best of our knowledge, is by K. Ehrig,
J. M. Küster, and G. Taentzer [6], extending the work by R. Bardohl, H. Ehrig,
J. de Lara, and G. Taentzer [1] considerably. In [6], they translate meta models
into a graph grammar that defines the same language of instance graphs. How-
ever, they do not consider composite associations, they restrict multiplicities
only to very simple cases, and they do not distinguish unique from non-unique
associations. Moreover, their generated graph grammars must make heavy use
of negative application conditions in the form of negative context graphs, and
they must prioritize some rules over others in the form of layered graph gram-
mars. This complicates the grammar and, what is more important, reasoning
about the grammar and the generated graph language. On the other hand, they
are able to cover some (basic) meta model constraints by translating them into
application conditions. So far, we have not considered yet how meta model con-
straints can be translated along with the class diagram into an adaptive star
grammar, possibly with application and graph conditions. A related, but not
general approach has been described in previous work [10] where rules must not
be applied if their application conditions are not satisfied. In future work, we
intend to make use of generalized results on context conditions and their relation

62

to logical graph properties and constraints by A. Habel and K.-H. Pennemann [8]
as well as A. Habel and H. Radke [9].

Furthermore, we will extend the presented construction to newer concepts
of class diagrams like association sub-setting and redefinition in future work.
Instantiating such associations in instance graphs primarily means selecting the
correct association depending on the classes of the connected nodes.

References

1. R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating meta-modelling
aspects with graph transformation for efficient visual language definition and
model manipulation. In Proc. Fundamental Approaches to Software Engineering
(FASE’04), LNCS 2984, pp. 214–228. Springer, 2004.

2. B. Courcelle. An axiomatic definition of context-free rewriting and its application
to NLC rewriting. Theoretical Computer Science, 55:141–181, 1987.

3. F. Drewes, B. Hoffmann, D. Janssens, and M. Minas. Adaptive star
grammars and their languages. Theoretical Computer Science (2010),
doi:10.1016/j.tcs.2010.04.038.

4. F. Drewes, B. Hoffmann, D. Janssens, M. Minas, and N. V. Eetvelde. Adaptive star
grammars. In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg,
editors, 3rd Int’l Conf. on Graph Transformation (ICGT’06), LNCS 4178, pp. 77–
91. Springer, 2006.

5. F. Drewes, B. Hoffmann, and M. Minas. Adaptive star grammars for graph models.
In H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer, editors, 4th Int’l Conf. on
Graph Transformation (ICGT’08), LNCS 5214, pp. 201–216. Springer, 2008.

6. K. Ehrig, J. M. Küster, and G. Taentzer. Generating instance models from meta
models. Software and System Modeling, 8(4):479–500, 2009.

7. J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3: Beyond Words, ch. 3, pp. 125–
213. Springer, 1999.

8. A. Habel and K.-H. Pennemann. Correctness of high-level transformation sys-
tems relative to nested conditions. Mathematical Structures in Computer Science,
19(2):245–296, 2009.

9. A. Habel and H. Radke. Expressiveness of graph conditions with variables. In
H. Ehrig and C. Ermel, editors, Int’l Colloquium on Graph and Model Transfor-
mation (GraMoT’10), 2010. To appear in Electr. Comm. of the EASST.

10. B. Hoffmann and M. Minas. Defining models – meta models versus graph gram-
mars. In Proc. 6th Workshop on Graph Transformation and Visual Modeling Tech-
niques (GT-VMT’10), Paphos, Cyprus. Appears in Electr. Comm. of the EASST,
vol. 29, 2010.

11. OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.2. OMG
Document Number: formal/2009-02-04.

12. A. Schürr, A. Winter, and A. Zündorf. The Progres approach: Language and
environment. In G. Engels, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by Graph Transformation. Vol. II:
Applications, Languages, and Tools, ch. 13, pp. 487–550. World Scientific, Singa-
pore, 1999.

63

64

Formalizing Models with Abstract Attribute
Constraints ? ??

Márk Asztalos, Péter Ekler, László Lengyel, Tihamér Levendovszky, and
Tamás Mészáros

Department of Automation and Applied Informatics
Budapest University of Technology and Economics

{asztalos, peter.ekler, lengyel, tihamer, mesztam}@aut.bme.hu

Abstract. Offline verification of model processing programs has become
a fundamental issue in model-based software development. Offline means
that only the definitions of the program and the concerned modeling lan-
guages are taken into account. Therefore, the results of the analysis hold
for every possible input model. Although the offline analysis is very com-
plex, it must be performed only once. In our work, we concentrate on
the verification of graph rewriting-based model transformations. Previ-
ous work has presented an automated framework for the verification of
model transformations. As a part of our framework, we propose a for-
malism to describe models with abstract attribute constraints in this
work. The operations of our framework are based on this mathematical
background. On a case study of refactoring mobile-centric social network
models, we demonstrate that our framework is able to verify important
properties automatically by the declarative description of model trans-
formations, which is based on the contributed formalism for models.

1 Introduction

With the increasing need of reliable systems, the verification of model processing
programs has become a fundamental issue in model-based software engineering,
where verification covers the analysis of non-functional properties of the model
processing programs (e.g. termination) and the validation of their outputs.

Graph rewriting-based model transformation is a frequently used technique
for defining programs that work on models formalized as graphs. In our termi-
nology, a model transformation is the definition of a model processing program
that is based on graph rewriting systems [6] and is specified by a set of rewriting
rules (based on the double-pushout approach) as well as an additional control
structure that explicitly defines the execution order of the rules.
? This paper was supported by the János Bolyai Research Scholarship of the Hungarian

Academy of Sciences.
?? This work is connected to the scientific program of the ”Development of quality-

oriented and harmonized R+D+I strategy and functional model at BUTE” project.
This project is supported by the New Hungary Development Plan (Project ID:
TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

65

When they are feasible, offline verification methods are extremely useful in
industrial applications. A verification technique is called offline if only the def-
inition of the program and the specification of the languages that describe the
models to be transformed are used during the analysis process. Therefore, the
results of the offline analysis are general in the sense that they are independent
from the concrete input models. Although the offline analysis is very complex
(e.g. the termination of a graph transformation is undecidable in general [10]),
it must be performed only once. Several techniques can be found for the verifi-
cation of graph rewriting-based model transformations, however, these methods
usually lack generalization possibilities, since the analysis is performed manually
or the methods can be applied only to a certain transformation class or to the
analysis of a certain type of property only. Therefore, there is an increasing need
for automated verification methods and tools (for a more detailed discussion,
see [2]). The goal of our research is to provide an offline, automated verifica-
tion framework for the analysis of graph rewriting-based model transformations.
This paper outlines the concept of our verification approach, and we introduce
a formalism for describing metamodels, models, model patterns with attribute
constraints. The verification of the model transformation is based on the analysis
of a declarative formal description of the programs. This paper provides the es-
sential mathematical background for this declarative description by formalizing
patterns that are used to specify the left-hand side and right-hand side of the
graph rewriting rules. The complete presentation of the declarative description
of the transformations would exceed the limits of this paper, but we demonstrate
informally on a case study how our formalism makes this description possible.

Section 2 presents a case study of refactoring mobile-centric social network
models, which will be used to demonstrate our verification concepts. Section 3
introduces the main concepts of our verification methods informally. After the
mathematical background is presented in Section 4, we provide the contribution
of this paper in Section 5 and demonstrate its applicability on the case study in
Section 6. Finally, we describe the related work in Section 7 and summarize our
results in Section 8.

2 Case Study

Phone books in the mobile devices represent social relationships that can be
integrated into social networks. PhoneBookMark is a phone book-centric social
network implementation by Nokia Siemens Networks [7]. We took part in the
project and, before the public introduction, it was available for a group of general
users: it had 420 registered members with more than 72000 private contacts.

Visual Modeling and Transformation System (VMTS) [14] is a metamodel-
ing and model transformation framework. In VMTS, we have created a domain-
specific modeling environment PhoneBookMark . The entities of its metamodel
are presented in Figure 1a: a member is a user of the social network, a phone is
a mobile device of a member, which can contain phone book entries, a contact
corresponds to a phone book entry of a phone. Relations between the entities
have also been defined: each member can own several phones (PhoneOwner-
Connection), each phone can contain several contacts (ContactContainment).

66

A contact can be connected to a member with a CustomizedConnection or a
SimilarityConnection edge. A CustomizedConnection, or shortly customization
edge, means that the current entry corresponds to the member of the social
network. Whenever the owner member of the entry connects to the social net-
work, the data can be synchronized. PhoneBookMark provides a semi-automatic
similarity detecting and resolving mechanism, which detects similarities between
phone book contacts and the members of the network. Similarity means that the
algorithm suggest to the user that the contact and the member represent the
same person. In this case, a SimilarityConnection, or shortly, a similarity edge is
created between the contact and the appropriate member, later, the user has to
decide the acceptance of this relation. For this purpose, ApprovalState attribute
has been defined for similarity edges, whose value can be approved, rejected, or,
the default value, ignored, which means that the user has not made a decision
yet. During the refactoring of a model, approved edges will be converted to cus-
tomization edges and rejected edges will be deleted from the model. In VMTS,
the domain-specific environment for PhoneBookMark includes the metamodel
and a concrete syntax for the instance models. A sample model is presented in
Figure 1b. The entities can be easily distinguished by their icons and colors.
Similarity edges are denoted by red, customization edges by goldenrod colors.

(a) PhoneBookMark Metamodel (b) Sample Instance Model

Fig. 1: PhoneBookMark Domain in VMTS
In VMTS, the model transformations are based on graph rewriting and are

defined with the use of two modeling languages: the Visual Control Flow Lan-
guage (VCFL) and the Visual Transformation Definition Language (VTDL) [1].
The activity diagram-like VCFL models controls the execution order of the
rewriting rules, while the rewriting rules are described with VTDL models. The
application of the rules is based on the double pushout approach [6]. We have
implemented a model transformation (Similarity Handling Transformation) that
refactors PhoneBookMark models, it processes the rejected, approved, and ig-
nored similarity edges. The control flow graph of the transformation, as imple-
mented in VMTS, is presented in Figure 2a. The dashed, gray control flow edges
are followed if the application of the source rules was unsuccessful, which hap-
pens when no matches of the left-hand side can be found. The solid, gray edges
are followed if the application of the previous rule was successful, while solid
black edges are always followed. Rules with a circle in the top right bottom are
executed exhaustively, which means that the rules are applied repeatedly, until
they cannot be applied any more. Figure 2 contains the definition of the rules
of the transformation. In VMTS, the left-hand side and right-hand side of the
rules are merged, elements that are deleted by the rule are red, newly created

67

(a) Transformation Control Flow

(b) Rule rc1 (c) Rule rc2

(d) Rule rc3 (e) Rule rc4 (f) Rule rc5

(g) Rule rc6

Fig. 2: Similarity Handling Transformation

are blue and the attributes of gray elements are modified. In Figure 2, we show
the definition of the rules in VMTS along with the attached constraints and
imperative code for the modification of the attributes.

In the following, two edges are called forking if they have the same source
node. The requirements of this transformation are as follows: (i) Inconsistent
states, when the model has forking approved edges (approved similarity edges
that have the same source contact), should be identified. In this case, all fork-
ing approved edges should be modified to be in ignored state. (ii) All rejected
similarity edges should be deleted. (iii) In a consistent state, all approved sim-
ilarity edges should be transformed to a customization edge. (iv) Whenever a
customization edge c is present, all similarity edges that are forking with c should
be deleted. We will use the Similarity Handling Transformation to present our
verification techniques in the following sections.

3 Offline Verification Methods

In this section, we provide the informal outline of our verification approach based
on our previous work [3] [2] [4]. Recall that we restrict ourselves to the analysis of
model processing programs based on graph rewriting systems, which are defined
by a set of rewriting rules and an additional control structure. We mentioned
that such a program is referred to as model transformation. We assume that
the control structure is a directed control flow graph, which meets the following
conditions. Start node and end nodes are used to mark the starting point and
possible end points of the transformations, other nodes of the transformation are
the rewriting rules. The flow edges of the control flow graph define the execution
order. Also, branches can be defined. We assume that the output is always the
modified input model, but this is not a restriction of the generality of the model

68

transformations, since assuming that we have multiple input and multiple output
models, we can always compose their union and treat them as a single model.

Assume that we have a language (MCDL [2]) that is able to express the
verifiable properties of the output models of the transformations. For example,
given the Similarity Handling Transformation presented above, we may need
to express the following properties of the output models (the properties them-
selves are in italic): (v1) After the application of the transformation, no approved
similarity edge should be present in the model. Each approved edge should be
transformed to a customization edge, or should be deleted if there are more than
one approved similarity edge from the same contact. (v2) After the application
of the transformation, no rejected similarity edge should be present in the model.
All rejected similarity edges should be deleted. (v3) After the application of the
transformation, it is forbidden that a contact has a similarity and a customiza-
tion edge at a time. In this case, the similarity edge should have been deleted.
(v4) After the application of the transformation, it is forbidden that a contact
has two customization edges at a time, provided that before that transformation
started this pattern was also forbidden. This would result in an inconsistent state.

Model Condition Inference Logic (MCIL) [2] [4] is an inference logic that is
able to analyze logical implications such as φ1 ⇒ φ2, where Greek letters denote
MCDL formulae. The result of the analysis can be the proof, the refutation,
or the result that the implication is undecidable. For example, given an MCDL
formula ϕ stating that after the application of the transformation, the approval
state of all similarity edges in the model will be ignored, we can derive the first
two verifiable formulae presented above from ϕ, because if all similarity edges
are in ignored state, it implies that there are neither approved nor rejected edges.
For MCIL, we have defined several extensible deduction rules.

In the following, we detail the main concept of our verification approach that
is based on the components MCDL and MCIL. Given a model transformation,
assume that we are able to assign MCDL formulae to each control flow edge of
the transformation such that given a flow edge f , the formula φf assigned to f
is a property that is satisfied by the model under transformation at its current
state when the execution of the transformation reaches f . If we have only one
end node in the control flow and it has only one incoming edge, and the formula
φfinal is assigned to this edge, φfinal will be satisfied by all possible output
models of the transformation. During the analysis of a model transformation,
the goal of our methods is to produce these assignments. Its main benefit is as
follows: given a property of the output models that should be validated, which
is described as an MCDL expression φver, if we can prove φfinal ⇒ φver, then
the property is validated. Another benefit is that we assign formulae to all flow
edges, which helps locating the problematic points while debugging.

Obviously, the main question is how to produce the assignments. The start
node of the transformation has one outgoing edge. The formula assigned to this
edge is called the initial formula. It is known, since this is the condition that
must be satisfied by all possible input models. Assume that we have a rule in the
transformation with several incoming edges and one outgoing edge, and we have

69

already assigned formulae to the incoming edges. In other words, we know some
properties of the model under transformation when the execution reaches a rule.
We have the formal, declarative definition of the rule, therefore, by its definition,
we may derive certain properties that will be true after the application of the
rule. These properties described in MCDL can be assigned to the outgoing edge.
This method is called the propagation of formulae through a rule, which is a
very complex task itself, it depends on the MCDL formulae, and the definition
of the rule. The goal of our methods is to collect the most information in the
formulae that are assigned to the edges. However, if nothing can be derived, it
will not imply the failure of our algorithm, only that the assigned formulae will
not contain relevant information, therefore, the verifiable properties could not
be derived from them by MCIL.

The contribution of this paper is a formalism to define patterns of models
and describe metamodels and models. The declarative description of the trans-
formations, which makes the creation of the assignment possible by automatic
algorithms, and the MCDL language are based on this formalism as we demon-
strate it in Section 6.

4 Mathematical Background

This section summarizes the mathematical background of typed graphs [5, 6].

Definition 1 (grap and graph morphism). A graph G = (N,E, s, t) consists
of a set N of nodes, E of edges and two functions s, t : E → N , the source and
target functions. The elements LG of a graph G are its nodes and edges, i.e.
LG = NG ∪ EG. Given graphs G1 = (N1, E1, s1, t1) and G2 = (N2, E2, s2, t2),
a graph morphism f : G1 → G2, f = (fN , fE) consists of two functions fN :
N1 → N2 and fE : E1 → E2 that preserve the source and target functions, i.e.
fN ◦ s1 = s2 ◦ fE and fN ◦ t1 = t2 ◦ fE.

Definition 2 (type graph with inheritance and inheritance clan). A
type graph with inheritance is a double (GT , I) consisting of a type graph GT =
(N,E, s, t) (with a set N of nodes, a set E of edges, a source and a target function
s, t : E → N), and inheritance graph I sharing the same set of nodes N . Given a
type graph with inheritance T = (G, I) For each node n in N (N ≡ NI ≡ NG),
the inheritance clan is defined by clanI(n) = {n′ ∈ N |∃ path n′ →∗ n in I}
where path of length 0 is included, i.e. n ∈ clanI(n).

Given a node n in a type graph, clanI(n) is the set of nodes that are inherited
from n, moreover, clanI(n) also contains n. Instance of a type graph, (a graph
typed over a concrete type graph), is defined by the instance graph itself and a
special type morphism that assigns an element of the type graph to each element
of the instance graph. The type morphism should take inheritance into account
and is called clan morphism.

Definition 3 (clan morphism, instance graph and typed morphism).
Given a type graph with inheritance T = (G, I), and a graph H, a clan morphism
τ : H → T consists of two functions τN : NH → NG, τE : EH → EG such that:

70

(i) ∀e ∈ EH : τN ◦ sH(e) ∈ clanI(sG ◦ τE(e)), and (ii) ∀e ∈ EH : τN ◦ tH(e) ∈
clanI(tG ◦ τE(e)). Given a type graph (with inheritance) T , a double (G, τ) of a
graph G along with a clan morphism τ : G → T is called an instance of T . G
is said to be typed over T . Given type graph T and two instance graphs (G1, τ1),
(G2, τ2), a graph morphism f : G1 → G2 typed over T is a graph morphism,
such that τ2 ◦ f = τ1.

5 Verification Framework

In this section, we introduce a formalism to provide the mathematical back-
ground of our verification framework. The main components what we want to
formalize are: (i) metamodels: types of entities and relations, with the names of
the attributes; (ii) models: entities and relations typed over a metamodel and at-
tribute values assigned to each possible attribute; (iii) patterns: a model pattern
that contains model elements and abstract attribute constraints; (iv) matches:
formal mapping between patterns or between patterns and models.

The key concept in our approach is the handling of attributes and attribute
constraints. We handle attribute types and values in an abstract form. For ex-
ample, when we formalize the PhoneBookMark metamodel, we have an element
Contact with attributes Id and IsPrivate, but we do not define the types and
possible values of the attributes, only their names. The concept is similar to the
way in which we refer to the elements of a set. Therefore, we say that we define
only the interface of the metamodel. Attribute constraints are also handled by
their interface without explicitly defining their language. An attribute constraint
over a pattern is a logical function with parameters that refer to the attributes
of the pattern elements. If the values of the attributes are known, the function
can be evaluated. For example, given an element c in a model, let the type of
c be Contact. If we defined that the Id attribute would be a natural number,
we could write an attribute constraint c.Id > 5. However, in our case, without
explicitly defining the types of the attributes, we need to handle this constraint
in a more abstract level. The constraint will be a function f such that f has
one parameter, and returns a logical value. Moreover, we need to specify that
the single parameter of f is mapped to the Id attribute of element c. Given
another constraint such as c.Id < 4, a constraint logic may derive that the two
previous constraint can never be true at the same time, or they are conflicting.
The conflict can be treated as an abstract relation between the constraints, and
instead of relying on a concrete constraint logic we work with abstract attribute
constraints and such relations. The main benefit of this abstraction is that our
framework can be easily implemented and integrated into any tool, where com-
plex languages are used for the specification of attributes and constraints, for
example C# in the case of VMTS.

5.1 Metamodel Interfaces and Abstract Attribute Constraints

We formalize the interface of metamodels by specifying the types of the entities
(nodes) and relations (edges) along with the attributes. Recall that we do not
deal with types of the attributes, i.e. we only define their names.

71

Definition 4 (metamodel interface). A metamodel interface M is a triple
(T,A, σ), where T is a type graph (with inheritance), A is a set of attributes
that are defined on the elements of the type graphs, and σ : LT → 2A is the
attribute assignment function that assigns a set of attributes to each element in
the type graph. Because of the inheritance of attributes, the following condition
must hold: ∀n, n′ : n, n′ ∈ NT , n

′ ∈ clanI(n)⇒ σ(n) ⊆ σ(n′).

An abstract attribute constraint over a model consists of a function, which
evaluates the value of the constraint. The return value of such a function is the
logical value true or false. The function takes the values of the attributes as
parameters, therefore, we need additional functions that map each parameter to
a certain element of the model and to a certain attribute of the element. We can
evaluate constraints by assigning values to the referenced attributes.

In the following definitions, the set of natural numbers from a to b is denoted
by [a, b]. Moreover, to facilitate the formalization, assume that we have a set V
that contains all possible attribute values.

Definition 5 (abstract attribute constraint). Given a metamodel interface
M = (T,A, σ) and an instance graph G typed over T by clan morphism τ . An
abstract attribute constraint c over G is defined by the triple (ε, %, ω), where: (i)
ε : Vn → {true, false}, n > 0, true and false denote the logical constants;
(ii) n is the number of the parameters of function ε, called the arity of c and
is denoted by n = |c|; (iii) % : [1, n] → LG; (iv) ω : [1, n] → A, such that
∀i ∈ [1, n]⇒ ω(i) ∈ σ(τ ◦ %(i)).

Definition 6 (attribute value assignment). Given a metamodel interface
M = (T,A, σ), and a graph G typed over T by clan morphism τ . An attribute
assignment is a function v : LG×A → V, where V denotes the set of all possible
attribute values. An attribute value assignment v is called complete if ∀l, a : l ∈
LG, a ∈ σ(l) ⇒ ∃v(l, a), otherwise, it is called partial. An assignment is called
empty, denoted by v∅, if it does not assign a value to any of the attributes. Given
an abstract attribute constraint c over G, we say that v is complete with respect
to c if ∀i ∈ [1, |c|]⇒ ∃v(%(i), ω(i)).

Definition 7 (evaluation of a constraint). Given a constraint c = (ε, %, ω)
over a graph G, and an attribute value assignment v that is complete with respect
to c, the evaluation of c is the evaluation of the function ε as follows: ε(v(ω(1))
, v(ω(2)), ...v(ω(n))). We say that G satisfies c with respect to v (i.e. G �v c) if
the return value of the evaluation is true, otherwise c is not satisfied (G 2v c).

Definition 8 (attribute value assignment extension). Given a graph G
typed over a metamodel M, and a partial value assignment v. We say that an-
other value assignment v′ over G is an extension of v (denoted by v′ � v) if
∀l, a : l ∈ LG, a ∈ σ(l),∃v(l, a)⇒ ∃v′(l, a) ∧ v′(l, a) = v(l, a).

Although we handle attribute constraints in an abstract level, we may need
to explicitly specify that an attribute has a certain value, which can be expressed
by a special abstract attribute constraint.

72

Definition 9 (equality constraint). Given a metamodel interface M, a graph
G typed over TM by the clan morphism τ , an equality constraint is an abstract
attribute constraint specified by the triple (l, a, ν), where l ∈ LG, a ∈ σ(τ(l)),
and ν ∈ V. The abstract attribute constraint (ε, %, ω) is as follows: (i) n = 1,
(ii) %(1) = l, (iii) ω(1) = a, (iv) ε : V → {true, false}, such that ε(ν) = true,
∀ν′ 6= ν ⇒ ε(ν′) = false.

The relations conflict and derivation of constraints are defined as follows:

Definition 10 (relations of constraints). Given two sets C1, C2 of abstract
attribute constraints over the same graph G, and a value assignment v over G.
– C1 and C2 are conflicting (or are in conflict) with respect to v, denoted by
C1⊗v′ C2, if @v′� v such that v′ is complete, where G �v′ C1 and G �v′ C2.

– C2 is derivable from C1 with respect to v, denoted by C1 `v C2, if ∀v′ � v
such that v′ is complete, and G �v′ C1 ⇒ G �v′ C2.

The opposite of the previous two relations are as follows:
– C1 and C2 are not conflicting with respect to v, if ∃v′ � v such that v′ is

complete and G �v′ C1, G �v′ C2.
– C2 is not derivable from C1 with respect to v, if ∃v′ � v such that v′ is

complete and G �v′ C1, but G 2v′ C2.
Remark 1. In the previous definitions, if v is the empty assignment, we simply
ignore the term ’with respect to v’, and we say that C1 and C2 are (not) in
conflict, or C2 is (not) derivable from C1.

Obviously, given two constraint sets C1 and C2, they are conflicting, or not
conflicting, no other options are possible. However, it depends on the constraint
logic if the relation can be determined. It may happen that none of these relations
can be proved. Since we assume that we do not know the concrete functions in
the constraints, we will use these relations during the analysis, for this purpose,
we introduce two functions and assume that both of them are available as global
functions in our system:
– The function conflicting(C1, C2, G, v) takes two sets C1, C2 of constraints,

a graph G, on which the constraints are defined, and a (possibly empty)
value assignment v. Given any possible parameters, this function returns a
value either true, false, or unknown. The value true means that it can be
proved that C1 and C2 are conflicting, false means that it can be proved
that C1 and C2 are not conflicting, and unkown means that neither can be
proved, i.e. the system does not have enough information.

– The function derivable(C1, C2, G, v) takes two sets C1, C2 of constraints, a
graph G, on which the constraints are defined, and a (possibly empty) value
assignment v. Given any possible parameters, this function returns a value
either true, false, or unknown. The value true means that C2 can be proved
to be derivable from C1, false means that it can be proved that C2 is not
derivable from C1, and unknown means that neither can be proved, i.e. the
system does not have enough information

73

The assumption that we have these two functions seems to be very restric-
tive, since in complex attribute constraint description languages, it is really
hard to determine the relation between arbitrary constraints. However, the im-
plementation of the previous functions always have the possibility to return the
value unknown. For example, assume that we have an instance graph of the
PhoneBookMark metamodel, with a single Contact element c. The constraints
c.Id > 5, c.Id < 5 can be proved to be in conflict if the implementation of the
function conflicting contains some constraint logic based on intervals of natural
numbers. However, it is also possible that conflicting is not implemented in that
way in our system and it cannot prove this relation. In this case the return value
will be unknown. The analysis of the transformations and the verification of the
properties of the models are based on the relations of certain constraint sets in
several cases. If the relation between the sets can be determined by the current
conflicting and derivable functions, we can obtain more information and de-
rive the proof of more properties. However, if the relations between the sets are
unknown, the system may not be able to prove certain properties. Hence, the
usability and efficiency of our framework is largely depends on the capabilities
of the current implementation of the previous two functions.

5.2 Patterns of Models

In order to handle type inheritance in matches, we introduce the definition of
weakly typed morphisms. One can easily show that typed graphs along with
weakly typed morphisms form a category, but its formal presentation would
exceed the limits of this paper.

Definition 11 (weakly typed morphism). Given typed graphs (G1, τ1) and
(G2, τ2) typed over a type graph with inheritance T . Let τ1 = (τN

1 , τ
E
1) and

τ2 = (τN
2 , τ

E
2) be the clan morphisms of G1 and G2. A weakly typed morphism

m : G1 → G2 is a graph morphism such that: (i) ∀n ∈ NG1 : τN
2 ◦ m(n) ∈

clanI(τN
1 (n)), (ii) ∀e ∈ EG1 : τE

2 ◦m(e) = τE
1 (e).

Remark 2. Given a type graph T , the category GraphsWMT of graphs typed
over T with weakly typed morphisms consists of instance graphs of T as objects
and weakly typed morphisms as morphisms.

Patterns are instances of metamodel interfaces. A pattern defines the ele-
ments of a model part along with additional attribute constraints.

Definition 12 (pattern). A pattern P = (G,C) of a metamodel interface M
is an instance graph G of M and a set C of abstract attribute constraints defined
over G.

Remark 3. The constraints of a pattern P are also denoted by C = C@P . We
say that the elements of a pattern (denoted by LP) are the elements of the graph
of the pattern, i.e. LP = LG.

74

(a) P1 (b) P2 (c) P3 (d) P5 (e) P6 (f) P7 (g) P12 (h) P13

Fig. 3: Sample Patterns

We have presented several patterns in Figure 3. We use the concrete syntax
to present the elements of the patterns. For example pattern P5 contains a con-
tact, a member, and a similarity edge between them, and we define a constraint
which states that the similarity edge should be approved, i.e. the value of the
ApprovalState attribute must be approved. We will use the presented patterns
in the next section.

Definition 13 (satisfaction of constraints by patterns). Given a pattern
P = (G,C), an additional set of constraints C ′ on the graph of P and an attribute
value assignment v.
– We say that P satisfies C ′ with respect to v (denoted by P �v C ′) if (i)
∃v′ � v such that v′ is complete with respect to C and G �v′ C, and (ii)
∀v′ � v, where v′ is complete w.r.t. C and C ′: G �v′ C ⇒ G �v′ C ′.

– We say that P does not satisfy C ′ with respect to v (denoted by P 2v C
′),

if @v′ � v, where v′ is complete w.r.t. CP and C ′, G �v′ C and G �v′ C ′.
– We say that C ′ is satisfiable by P with respect to v if ∃v′ � v that v′ is

complete with respect to C and G �v′ C, and G �v′ C ′.
– Otherwise, the satisfaction of C ′ is not decidable, denoted by P �? C ′.

If v is the empty attribute value assignment, we simply say that P satisfies C ′

(P � C ′), or P does not satisfy C ′ (P 2 C ′), etc.

Given a pattern, the satisfaction of other constraints may be decidable by
the relation of the constraint sets even when we do not have a complete attribute
value assignment.

Proposition 1. Given pattern P = (G,C), an attribute value assignment v,
and an additional constraint set C ′ over G, and we assume that ∃v : G �v C.
– derivable(C,C ′, G, v) = true⇒ P �v C

′

– conflicting(C,C ′, G, v) = true⇒ P 2v C
′

– conflicting(C,C ′, G, v) = false⇒ C ′ is satisfiable by P

We need to define the mapping of attribute constraints by morphisms. A
morphism maps elements of a pattern into elements of another one. Therefore,
in the case of weakly typed morphisms, the constraints on the first graph can be
mapped as well.

Definition 14 (mapped constraints). Given a metamodel interface M =,
two patterns P1 = (G1, C1), P2 = (G2, C2) of M, and a weakly typed morphism
m : G1 → G2. For each c = (ε, %, ω) ∈ C1, the mapping c′ = m(c) is a constraint
on P2, which exists if ∀i ∈ [1, |c|] : ∃m(%(i)). The mapped constraint c′ is an
abstract attribute constraint (ε′, %′, ω′) on P2 such that ε′ = ε, %′ = m ◦ %, and
ω′ = ω. We can also map a whole set C1 of constraints, denoted by m(C1).

75

Metamodel interfaces extend the definition of typed graphs with inheritance
and patterns extend the definition of instance graphs, therefore, we can define
morphisms between patterns as well. A pattern morphism is a weakly typed
graph morphism between the graphs of the patterns. A pattern morphism de-
scribes a possible match of one pattern in another.It is not certain that the match
always exists, because the attribute constraints of the second pattern and the
mapped constraints of the first pattern may be in conflict. For this reason, we
introduce the definition of weak and strong matches that contains more strict
conditions on the morphisms.

Definition 15 (pattern morphism). Given patterns P1 = (G1, C1), P2 =
(G2, C2) of the metamodel interface M, an injective, total, weakly typed mor-
phism p : G1 → G2 is called a pattern morphism and is denoted by p : P1 →
P2 if conflicting(C2, p(C1), G2) 6= true. We say that p is a weak match if
conflicting(C@P2, p(C@P1), G2) = false. p is a strong match if derivable(C@P2,
p(C@P1), G2) = true.

Models can be formalized as a special patterns, where we know the values of
all attributes. Such a pattern is called a model pattern.

Definition 16 (model pattern). A pattern P is called a model pattern, if:
(i) ∀l, a : l ∈ LP , a ∈ σ(l) ⇒ ∃ a unique c ∈ C@P such that c is an equality
constraint on l and a, (ii) no other attribute constraints are in C@P .

The equality attribute constraints in a model pattern clearly define the values
of the attributes, therefore, a value assignment can be derived. Moreover, it is
easy to prove that this assignment is unique and complete.

Definition 17 (attribute value assignment of model patterns). A value
assignment vM by a model pattern M is defined as follows: ∀ equality constraint
c = (l, a, ν) ∈ C@M ⇒ vM (l, a) = ν, and ∃vM (l, a)⇔ ∃c = (l, a, ν) ∈ C@M .

Proposition 2. Given a model pattern M , and a value assignment vM by M ,
vM is complete and unique.

An important benefit of the model patterns is that the satisfiability of any
constraints on the model pattern can be determined, because we know the values
of all attributes (we have vM , which is complete). This also results that for
all possible constraints, their relation (e.g. if they are in conflict) can be also
determined with respect to vM , which results that given a pattern, all matches
can be enumerated. The proofs of these statements are trivial by the definitions,
exploiting that the only possible extension of vM is vM itself.

6 Verification of the Similarity Handling Transformation

In the previous section, we have provided the essential mathematical background
to formalize metamodels, patterns, and models with abstract attribute constra-
ints and to formalize matches between patterns. Based on this formalism, model

76

transformations can be described in a declarative way. The formal presentation
of this description would exceed the limits of this paper, but informally, a model
transformation is described as a set of rules and an additional directed control
flow graph. Each rule is defined by its left-hand side and right-hand side that
are patterns. For example, the declarative description of the rules of the Simi-
larity Handling Transformation are presented in Figure 4. In the following, we
use rcside

rule to denote a pattern of a specific rule. For example rcL2 is the pattern
in the left-hand side of rc2 and rcR6 is the pattern in the right-hand side of rc6.
In these rules, all constraints are equality constraints, therefore, the relations
of the constraints can be easily determined, i.e. the functions conflicting and
derivable will never return unknown in this case study.

(a) Rule rc1 (b) Rule rc2 (c) Rule rc3 (d) Rule rc4

(e) Rule rc5 (f) Rule rc6

Fig. 4: Formal Description of the Rules of Transformation Similarity Refactoring

VMTS contains the implementation of a verification framework based on the
concepts presented in Section 3. This framework can automatically perform the
verification of the Similarity Handling Transformation, which is presented in
the following to demonstrate the usefulness of MCDL. For the verification, we
need to provide the initial conditions: (i1) there exist no forking customization
edges, (i2) forking similarity edges cannot have the same target, and (i3) ini-
tially all contacts are not marked (the value of the IsMarked attribute is false).
The initial conditions and the verifiable properties presented informally in Sec-
tion 3 are formally specified in Table 1, let φinit = φinit

1 ∧ φinit
2 ∧ φinit

3 . Given
the initial conditions, the discovery algorithm traverses the control flow of the
transformation and assigns a formula to each control flow edge. Table 2 shows
the discovered formulae. The final formula can be derived, which is φfinal = φe8

in our case. MCIL can derive all four verifiable properties from the final formula,
therefore, all properties can be verified. We point out that VMTS also provides
the derivation steps of the inference.

Table 1: MCDL Conditions on PhoneBookMark Models
Initial Conditions Verifiable Properties

φinit
1 = @P1 ∧ @P2 φ

init
2 = @P3 φ

init
3 = @rcL4 φver

1 = @P5 φ
ver
2 = @P6 φ

ver
3 = @P7 φ

ver
4 = @P1

7 Related Work

In this section, we present the work related to the formalism that constitutes
the contribution of this paper. For a detailed discussion on offline verification

77

Table 2: Assignments of MCDL Formulae
Edge Discovered Formula Edge Discovered Formula

e1 φe1 = φinit e5 φe5 = φinit
1 ∧ φinit

2 ∧ @P6 ∧ φinit
3 ∧ ∃P13

e2 φe2 = φinit ∧ @P6 e6 φe6 = φinit ∧ @P6 ∧ @rcL2
e3 φe3 = φinit

1 ∧ φinit
2 ∧ @P6 ∧ ∃rcR2 e7 φe7 = φe6 ∧ @rcL5

e4 φe4 = φinit
1 ∧ φinit

2 ∧ @P6 ∧ @rcL3 ∧ ∃P12 e8 φe8 = φe7 ∧ @rcL6

methods for graph rewriting-based model transformations in general, see the
related work section in our previous paper [2].

Our formalism is based on typed graphs with inheritance as presented in [6].
To use typed attributed graphs, we need to specify the data type algebra. Our
abstraction of the attribute constraints makes it possible to work with attributes
and constraints without explicitly stating anything about the type of attributes.

[13] presents an approach to formally describe certain parts of graph trans-
formations in order to reason about the transformations in a proof assistant.
However, this approach is limited to the structural aspects of graph rewriting.

In [12], [11], a verification method for graph rewriting-based model transfor-
mations are presented, and a formal representation is provided for the description
of model transformations as declarative relations in Prolog style. The specifica-
tion of the transformations is not based on rules-based graph grammars, but
uses a textual description based on a relational, declarative calculus. The pre-
sented representation can be directly translated into representations for theorem
provers. One of the key differences between this approach and that presented in
our paper is the handling of attributes. In [12], attribute values are explicitly de-
fined in the declarative description of the rules, while our approach can contain
arbitrary constraints by the definition of abstract attribute constraints.

[9] presents a notation of structural transformations, namely programs with
interface, that are a generalization of programs over transformation rules. The
presented formalism makes it possible to analyze and verify the programs. Nested
conditions that can express the verifiable properties are also defined. Similarly
to the concept presented in [8], [9] assumes that the language of attribute const-
raints is defined by a data signature and algebra. In our approach, we do not
rely on these formalisms, the definition of abstract attribute constraints make it
possible to work with any type of imperative and constraint description language
(e.g. C# in VMTS) during the implementation of the verification system.

8 Conclusions

The verification of model processing programs is a fundamental issue. This paper
concentrates on the verification of graph rewriting-based model transformations.
Moreover, we focus on the automated, offline verification of such programs. We
have implemented a verification framework in our modeling tool VMTS, and in
this paper, we have outlined the concept of the verification. This paper provides
the essential mathematical background to describe model transformations for-
mally and declaratively based on the contribution of this paper, the definition of
patterns with abstract attribute constraints. The declarative description makes
it possible to perform reasoning about the properties of the transformation in an

78

offline way. The use of abstract attribute constraints makes it easier to realize
our verification methods in real-world model transformation frameworks with
complex languages to specify attribute constraints and write imperative code.
In a case study of refactoring social network models, we presented the outline of
the transformation verification based on the formalism presented in this paper.
In future work, we plan to test our methods framework in industrial case studies.

References

1. Angyal, L., Asztalos, M., Lengyel, L., Levendovszky, T., Madari, I., Mezei, G.,
Mészáros, T., Siroki, L., Vajk, T.: Towards a fast, efficient and customizable
domain-specific modeling framework. In: Software Engineering. IASTED (2009),
Innsbruck, Austria

2. Asztalos, M., Lengyel, L., Levendovszky, T.: Towards Automated, Formal Verifi-
cation of Model Transformations. In: ICST. Paris, France (2010)

3. Asztalos, M., Lengyel, L., Levendovszky, T.: A formalism for describing modeling
transformations for verification. In: MoDeVVa. pp. 1–10. ACM, NY, USA (2009)

4. Asztalos, M., Madari, I., Vajk, T., Lengyel, L., Levendovszky, T.: Formal verifi-
cation of model transformations: an automated framework. In: ICCC-CONTI. pp.
493–498. Timisoara, Romania (May 2010)

5. Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating meta-modelling as-
pects with graph transformation for efficient visual language definition and model
manipulation. In: FASE. pp. 214–228 (2004)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation, Monographs in Theoretical Computer Science. An EATCS Series,
vol. XIV. Springer (2006)

7. Ekler, P., Lukovszki, T.: Experiences with phonebook-centric social networks. In:
CCNC. Las Vegas, USA (2010)

8. Orejas, F.: Attributed graph constraints. In: ICGT. pp. 274–288. Springer-Verlag,
Berlin, Heidelberg (2008)

9. Pennemann, K.H.: Development of Correct Graph Transformation Systems. Ph.D.
thesis, Department of Computing Science, University of Oldenburg (2009)

10. Plump, D.: Termination of graph rewriting is undecidable. Fundam. Inf. 33(2),
201–209 (1998)

11. Schätz, B.: Verification of model transformations. In: Pre-Proc. of GT-VMT. pp.
129–142. ECEASST, Paphos, Cyprus (March 2010)

12. Schätz, B.: Formalization and Rule-Based Transformation of EMF Ecore-Based
Models. SLE, Toulouse, France, September 29-30, 2008. Revised Selected Papers
pp. 227–244 (2009)

13. Strecker, M.: Modeling and verifying graph transformations in proof assistants.
Electr. Notes Theor. Comput. Sci. 203(1), 135–148 (2008)

14. VMTS website: http://vmts.aut.bme.hu/

79

80

Incremental update of constraint-compliant
policy rules

Paolo Bottoni1 and Andrew Fish2 and Francesco Parisi Presicce1

1 Department of Computer Science, “Sapienza” University of Rome, Italy
(bottoni,parisi)@di.uniroma1.it

2 School of Computing, Engineering and Mathematics, University of Brighton, UK
Andrew.Fish@brighton.ac.uk

Abstract. Organizations typically define policies to describe (positive
or negative) requirements about strategic objectives. Examples are poli-
cies relative to the security of information systems in general or to the
control of access to organizations’ resources. Often, the form used to
specify policies is in terms of general constraints (what and why) to
be enforced, with procedures given as rules (how and when). The con-
sistency of the system (procedures causing a transformation from valid
states to valid states) can be compromised and rules can violate some
constraints when constraints are updated due to changing requirements.
In this paper, we propose a systematic way to update rules as a conse-
quence of modifications of constraints, by incrementally modifying one
or more of the components of a rule: the left-hand side, the right-hand
side, or its application conditions.

1 Introduction

Graph constraints and graph transformations provide a formal model for defin-
ing and managing strategic policies adopted by organisations with respect to
security or access control issues. Policies can be specified with constraints, while
management procedures consistent with these policies are given via rules. In both
cases, the models are given in the framework of typed attributed graphs, with
special attributes defining the relevant properties, while rules exploit application
conditions to enforce consistency. By consistency, we mean that procedures can
only cause transformations from valid states to valid states. As a consequence,
the class of graphs generated, starting from a valid graph, by using the procedure
is a subset of the class of graphs satisfying the constraints.

Usually, policies and procedures are not fixed, but can evolve independently,
following the introduction, revision or deletion of constraints and rules, respec-
tively. However, at each moment the current configuration of constraints must be
satisfied by the current collection of rules. Two cases can be considered in which
the consistency of the system can be compromised: introduction of new rules –
which must be adapted to the current constraints – and definition of new con-
straints, again requiring rule adaptation. The identification of the modifications
needed to adapt rules to constraints has been the subject of several studies [8,

81

5]. However, these usually require the complete analysis of each rule after each
modification, without the possibility to adopt an incremental approach, taking
into account the relations between the previous sets of constraints and rules.

In this paper, we consider a class of constraint modifications for which such
an incremental approach is feasible, to propose a systematic way to update
rules as a consequence of modifications of constraints. We show how this can be
achieved for rules which were directly derived from the original constraints, thus
identifying the part of the rules affected by the modification.
Paper organisation. After presenting related work in Section 2, we provide
background notions on graph constraints and graph transformations in Section 3.
Section 4 introduces the running example for the paper and Section 5 presents
the notion of security policy and the derivation of an incremental procedure for
realising a policy. Section 6 discusses modifications to the rules derived from the
procedure. Finally, Section 7 draws conclusions and points to future work.

2 Related work

In [8], the notion of security policy framework was defined, given by a type graph,
a set of (named) graph transformation rules, and two sets of simple positive and
negative constraints, expressed as morphisms from a premise to a conclusion. A
framework was considered to be (positive/negative) coherent if all the graphs
derivable from the rules and consistent with the type graph respected all the
(positive/negative) constraints. A number of constructions were given for repair-
ing possible violations, through the modification of rules by adding application
conditions, in situations where different policy frameworks were merged. Based
on this approach, a UML-based language was defined in which to specify access
control policies [9]. The language exploits graph transformations to give a se-
mantics and a verification method for such specifications. This line of research
has also been exploited in [12] to define basic rules for controlling access in work-
flows. Rules allow the addition/removal of tasks and roles, plus the execution of
tasks, and application conditions are defined based on existing constraints.

In [1], we have considered the construction of transformation units ensuring
coherence with a simple form of nested constraints, admitting a single alternation
of universal and existential quantifiers. The units were defined starting with the
simple addition of an element, and producing repair rules to restore violated
constraints. The procedures presented here can be exploited in transformation
units, but each rule is guaranteed to not violate any constraint.

Habel and Pennemann [5] have extensively treated the problem of making
rules compatible with nested constraints by the addition of positive and nega-
tive application conditions. They unify theories about application conditions [2]
and nested graph conditions [11], lifting them to high-level transformations. An
existing rule is transformed so as to make it constraint preserving or constraint
guaranteeing, but no direct construction of rules from constraints is given.

82

Orejas is investigating a new approach relating attributed graph constraints
with attribute evaluation (for a summary see [10]). In the restricted form of at-
tributed evaluation adopted here, the approach should produce the same results.

Some works have studied the problem of constructing instances of metamod-
els, specialised by additional constraints. In [7] constraints are given in a logical
language, while in [4] they are given in OCL and tested after rule derivation from
the metamodel. Following the definition of [7], our approach leads to a soundness
preserving construction, rather than a completeness preserving one.

While [8] studied the modifications required by the introduction of new con-
straints, or of merging systems of constraints, the consequences of modifying
existing constraints, to weaken or strengthen them, were not analysed, nor does
this problem seem to have been treated by other authors.

3 Background

We set our study in the context of attributed typed graphs. A graph G =
(V,E, s, t) consists of a set of nodes V = V (G), a set of edges E = E(G), and
source and target functions, s, t : E → V . In a type graph TG = (VT , ET , s

T , tT),
VT and ET are sets of node and edge types, while the functions sT : ET → VT

and tT : ET → VT define source and target node types for each edge type. A
typed graph on TG = (VT , ET , s

T , tT) is a graph G = (V,E, s, t) equipped with
a graph morphism type : G → TG, composed of two functions typeV : V → VT

and typeE : E → ET , preserving the source sT and the target tT functions,
i.e. typeV (s(e)) = sT (typeE(e)) and typeV (t(e)) = tT (typeE(e)). To introduce
attributes, we follow [2]. For simplicity, we consider attributes only on nodes,
the generalisation to edges being straightforward. Intuitively, we distinguish be-
tween graph and value nodes, called VG and VD, respectively. Graph edges EG

are equivalent to those for graphs, while an attribute edge in the set EA defines
the assignment of a value to an attribute of a node. Hence, in an attributed typed
graph G = (V,E, s, t), we have: V = VG ∪VD, with VG ∩VD = ∅; E = EG ∪EA,
with EG ∩ EA = ∅; s = sG ∪ sA, with sG : EG → VG and sA : EA → VG; and
t = tG ∪ tA, with tG : EG → VG and tA : EA → VD. Analogously, the type
graph TG has distinct sets V G

T and V D
T of graph and value nodes respectively,

as well as EG
T and EA

T for graph and attribute edges. Given t ∈ V G
T , nodes of

type t are associated with a specific subset A(t) ⊂ EA
T of edge types, correspond-

ing to the set of attribute names for t. Formally: ∀t ∈ V G
T [∃!A(t) ⊂ EA

T [∀n ∈
VG[typeV (n) = t =⇒ {typeE(e) | e ∈ EA ∧ sA(e) = n} ⊂ A(t)]]]3. VD is taken
to be the disjoint union of the set of sorts in a data signature DSIG.

An atomic constraint is a morphism4 of typed attributed graphs ac : X → Y .
X is called the premise and Y the conclusion of the constraint ac. A graph G
satisfies ac, noted G � ac, if for each match m : X → G there exists a morphism
y : Y → G s.t. y ◦ ac = m. If ac : X → Y is an atomic constraint, ¬ac is an
atomic constraint. We define G � ¬ac iff G 2 ac. In the particular case of the
3 Some attributes may not be present for some node, indicating ”don’t care” situations.
4 All morphisms considered in the paper, except typing ones, are injective.

83

atomic constraint ¬iX : X → X, where iX is the identity on X, we call X a
negative atomic constraint, and we represent it by simply showing X. We call
M(c) = {G | G � c} the set of models for c.

We use graph transformations according to the Double-PushOut (DPO) ap-
proach [3]. Rules are defined by three graphs: the left- and right-hand sides (L
and R), and the interface graph K, containing the elements preserved by the
rule application. Two injective morphisms l : K → L and r : K → R model the
embedding of K in L and R. The left of Figure 1 shows a DPO direct derivation
diagram, modeling the application of a rule5 L

l← K
r→ R to a host graph G

to produce a target graph H. First, the pushout complement D is evaluated.
This is the unique graph for which morphisms K → D → G exist s.t. square
(1) is a pushout (i.e. G is the union of L and D through their common elements
in K). In particular, D contains the elements of G which are not in the image
of the elements in L \K. The pushout (2) is then computed, adding to D new
elements to form H, viz. the elements in R\K. The right of Figure 1 shows that
an atomic constraint can be associated with a rule in the form of an application
condition AC, of the form {xi : L → Xi, {yij : Xi → Yij}j∈Ji

}i∈I , for a match
m : L→ G of the LHS of a rule. An AC is satisfied by m if, for each ni : Xi → G
s.t. ni ◦ xi = m, there exists some oij : Yij → G s.t. oij ◦ yij = ni. A negative
application condition (NAC) derives from a negative application constraint: for
the rule to be applicable, Xi must not be present.

L

m

��
(1)

K

(2)

loo r //

k

��

R

m∗

��

Yij

oij

//
=

Xi

ni

--
=

yij

oo L

m

��
(1)

xioo K

(2)

loo r //

k

��

R

m∗

��
G Dfoo g // H G Dfoo g // H

Fig. 1. DPO Direct Derivation Diagram for simple rules (left) and with AC (right).

DPO rules for typed graphs are lifted to attributed typed graphs by consid-
ering algebras on some signature including the sorts for VD. Since morphisms
can only identify values in VD present in L and R, the modification of the value
of an attribute a for a given node n from v1 to v2 is represented by removing an
edge e1 of type a from n to v1 (i.e. e appears in L but not in K), and creating
an edge e2 of the same type a from n to v2 (i.e. e2 appears in R but not in K).

4 A scenario

We present a simple scenario to illustrate the type of problems considered, here,
introducing the notation exploited in the paper, where rectangular boxes repre-
sent instances of nodes in VG and ovals represent values in VD, while attribute

5 Where no ambiguity arises, we will omit explicit mention of morphisms l and r.

84

edges are distinguished from graph edges by the arrow end, the direction of edges
in EG being implied by the type graph in Section 5.

Consider an organisation in which the document authentication policy re-
quires each authenticated document D to present signatures from two managers,
one of level Lv1 and one of level Lv2, Lv2 being higher than Lv1 in the organi-
sation hierarchy. Moreover, a general policy requires that documents signed off
by Lv2 managers must have also been signed off by a Lv1 manager. Figure 2
illustrates the two resulting constraints.

1:Doc

Auth

1:Doc

Auth

:Mgr

:Mgr

Lv1

Lv2

1:Doc :Mgr

2:Mgr Lv2

Lv11:Doc

2:Mgr Lv2

1X

1c 2c

1Y 2Y
2X

Fig. 2. The two original constraints for document authentication.

The organisation adopts a procedure for authentication which is presented
in Figure 3. First an Lv1 manager will provide a reference for the document,
and then an Lv2 manager will authorise it. The rules are equipped with NACs
to avoid that the same manager reviews the same document twice. Note that a
procedure which requires a simultaneous authorisation by both managers would
also be coherent with the constraints in Figure 2.

1:Doc

2:Mgr Lv1

1:Doc

2:Mgr Lv1

1:Doc

3:Mgr Lv2

2:Mgr Lv1 1:Doc

3:Mgr Lv2

2:Mgr Lv1

Auth

1:Doc

3:Mgr Lv2

2:Mgr Lv11:Doc

2:Mgr Lv1
2,1N

1,1N

1L 2L1R 2R

1r 2r

Fig. 3. The two original rules for document authentication.

Realising that the current implementation of the policy does not prevent
duplication of work on one document, the organisation decides to forbid a docu-
ment from being authorised twice, or referenced by two or more managers of the

85

same level. Such conditions could be added as NACs to the rules, but a decision
is made for these to be defined as the negative constraints, shown in Figure 4
as forbidden graphs, ¬iX3 : X3 → X3, ¬iX4 : X4 → X4, and ¬iX5 : X5 → X5,
respectively, becoming part of the general policy for document management.

:Doc

:Mgr Lv1

:Mgr Lv1 :Doc

:Mgr Lv2

:Mgr Lv2:Doc

Auth

Auth

5X4X
3X

Fig. 4. Negative atomic constraints for the authentication policy.

Rules r1 and r2 of Figure 3 would not be coherent with the current configura-
tion of constraints and must be amended by adding NACs to them. In particular,
rule r1 must be upgraded with the NAC N1,2 requiring that no other manager
of level Lv1 has already pre-approved the document, while rule r2 is upgraded
using N2,2 to check that no authorisation already exists, besides requiring that
no other Lv2 manager has approved the document, using N2,1. Figure 5 shows
the new versions of the two rules.

1:Doc

2:Mgr Lv1

1:Doc

2:Mgr Lv1

:Mgr Lv1

1:Doc

3:Mgr Lv2

2:Mgr Lv1 1:Doc

3:Mgr Lv2

2:Mgr Lv1

Auth

1:Doc

3:Mgr Lv2

2:Mgr Lv1

1:Doc

2:Mgr Lv1

1:Doc

2:Mgr Lv1

1:Doc

3:Mgr Lv2

2:Mgr Lv1

Auth

1,1N

1,2N

2,2N

2,1N

1L

2L

1R

2R

1r

2r

Fig. 5. The modified procedure with NACs.

86

In a second moment, a general revision of the authorisation policies is is-
sued, now requiring that two Lv1 managers must approve a document, while
maintaining the request for Lv2 authentication, represented by the constraint in
Figure 6, which subsumes c1 : X1 → Y1. The constraint defined by the forbidden
graph X4 is also dropped.

1:Doc

Auth

1:Doc

Auth

:Mgr

:Mgr

Lv1

Lv2

:Mgr Lv1

6c

6X 6Y

Fig. 6. Revising authorisation constraints.

This modification has impact on both rules r1 and r2 in Figure 5. Indeed,
condition N1,2 for r1, which was derived from the forbidden graph X4, now
dropped, would prevent the satisfaction of constraint c6 : X6 → Y6. Moreover,
the right-hand side of rule r2 would not be coherent with c6, as it might lead
to approval of documents without the signature of two Lv1 managers. While
the solution to the first problem is simple (remove N1,2), the second problem
can be addressed in different modes: by requiring concurrent approval by the
additional Lv1 manager and the Lv2 one, by sequentialising the approvals of the
manager according to the level (i.e. simultaneous approval of both Lv1 managers
and subsequent Lv2 approval) or by considering a sequential process, where
the second Lv1 and the Lv2 approval can occur in any order. Note that since
c2 : X2 → Y2 still holds, it remains impossible to have a procedure which leads
to Lv2 approval without prior or concurrent Lv1 approval.

5 Constraint-compliant policy rules

We define policies on type graphs which are instances of the metamodel MM
in Figure 7 (left). Here, Document, Personnel and Resource are meta-types for
graph node types, defining the structural elements involved in a policy, while
State and Level are metatypes for attribute types. We call structural nodes
those nodes whose type is an instance of Document, Personnel or Resource.

Let the structural part of a constraint c : X → Y be the constraint resulting
by projecting X and Y onto the subgraphs formed only with structural nodes.

Figure 7 (right) presents the type graph exploited in the paper, where type
Doc is an instance of Document, Mgr, representing managers, is an instance of
Personnel, and Printer is a Resource type. The attribute types denote the
authorisation state for a document and different types of levels associated with
structural elements.

87

Fig. 7. Metamodel for security policies (left) and type graph for the scenario (right).

Policies employ a class of constraints where Y is a connected graph, present-
ing additional edges with respect to X only if their sources or targets are in
Y \ X and possibly adding edges only to a single element in X. The resulting
class of constraints is still significant for practical cases, and ensures local control
on constraint enforcing. Procedures are considered to be formed only with rules
which are increasing, with L = K, (or decreasing, with K = R) in the structural
part, and which may use only equality or inequality in conditions on attributes.

We introduce here the notion of incremental procedure realising a policy,
deriving rules from positive constraints according to the following definitions.

Given a positive constraint c : X → Y , we call completion of c the graph
difference between the premise X and the conclusion Y . This is evaluated as
the pushout complement Q′ in Figure 8 along the minimal graph X ′ for which
the pushout complement exists. The graph X ′ is computed as the discrete graph
formed by the structural nodes in X which are attached to edges in E(Y)\E(X).

X ′ //

��

Q′

��
X

c // Y

Fig. 8. Construction of the completion for a constraint.

We build an incremental procedure P (c) realising c as follows:
Let Q = {Q0, . . . , Qk} and H = {hj

i : Qi → Qj} be the sets of all graphs
and associated morphisms s.t.:

– Q0 = X ′ and Qk = Q′;
– for each i = 1, . . . , k, there exist injective morphisms6 X ′ hi

0→ Qi
hk

i→ Q′;
– for each i, j = 1, . . . , k, hj

0 = hj
i ◦ hi

0 and hk
i = hk

j ◦ hj
i ;

– Q′ is the colimit of the diagram obtained with Q and H;
– attribute edges are added only together with their source structural nodes7.

6 In order to emphasise X ′ = Q0 and Q′ = Qk we will abuse notation in the examples,

writing hQ′
i for hk

i : Qi → Q′ and hj
X′ for hj

0 : X ′ → Qj .
7 As value nodes are assumed to be always existing, we leave them understood when

not associated with structural elements.

88

Q and H are uniquely determined by X ′ and Q′. Then P (c) is obtained by
first producing the set of rules PQ(c) = {p : L = K → R}, with L = Qi and
R = Qj , for each hj

i : Qi → Qj ∈ H, s.t.

1. given three graphs Qi, Qj , Ql ∈ Q with morphisms hj
i , h

l
i, h

l
j s.t. hl

i = hl
j ◦hj

i ,
we use only hj

i and hl
j to form the rules in PQ(c);

2. either Qj 6= Q′ or VG(Qj) = VG(Q′), i.e. the structural part of the right
hand-side is equal to the structural part of the completion Q′ only in rules
which add some structural edge.

Three final steps are needed at this point.

1. Check the generated rules against the other constraints, and filter out those
which would certainly violate them. Namely, given a rule p : L→ R ∈ PQ(c)
and a constraint c : X → Y , we remove p from PQ(c) if there exists a
morphism R → X but no morphism R → Y . Moreover, the premise X is
added as a NAC for all the other rules, i.e. with R 6= Q′, and the resulting
rules included in P (c).

2. Build the set IQY of all the intermediate graphs between Q′ and Y , which do
not contain an instance of X. In particular, since X ′, and as a consequence
Q′, already contained all nodes in VG(Y), these intermediate graphs can
only differ from Q′ by some additional edges, either structural or for those
attributes which were in X (and are not in X ′ and therefore are not in Q′

either). If some attribute edge is added in some of the graphs in IQY , we
propagate these assignments backwards through all the graphs in Q, in such
a way that Q′ is still the colimit of the diagram. We then correspondingly
update the L and R for all attributes derived from these graphs.

3. If IQY is empty, i.e. Q′ and Y differ by only one edge, we replace each
rule in P (c) of the form p : L = K → Q′, by the set of rules F (c) =
{pF : L′ ← K → Y }, where each L′ is obtained from L by adding one of the
possible values for the attributes assigned in rule p (i.e. appearing in R but
not in K), compatible with the other constraints. We call rules with R = Y
final rules and add NACs to prevent the formation of other instances of X.

Theorem 1 states the consistency with a constraint c of the resulting set P (c).

Theorem 1. Given a constraint c : X → Y , a graph G satisfying c, and a rule
p : L← K → R ∈ P (c), the graph H obtained by applying p to G satisfies c.

Proof. [Sketch.] G can satisfy c in two ways: either it contains X and Y , or it
does not contain X. If it contains X, any rule from P (c) which is not a final rule
in F (c) will not disrupt Y , as rules are only increasing. If G does not contain
X, the graph H will only contain X if a final rule has been applied, as these are
the only ones which make complete X. But in this case, the rule will also have
provided a context Y for this occurrence of X. Note that different matches for
X cannot be generated by other rules because of the added NACs.

89

Example Figure 9 shows the construction of the completion graph for the con-
straint c1 : X1 → Y1 from Figure 2, while Figure 10 presents the construction of
the sets Q and H for this case. We have indicated only direct morphisms, and
omitted those which can be derived by transitivity.

1:Doc

Auth

1:Doc

Auth

:Mgr

:Mgr

Lv1

Lv2

1:Doc

1:Doc :Mgr

:Mgr

Lv1

Lv2

'Q1 'X

1X 1Y

1c

complement.pdf

Fig. 9. The construction of the completion for c1 : X1 → Y1 in Figure 2.

The top of Figure 11 shows how the last rule derived from morphism hQ′

6

would be modified. As the whole difference between X and Y is present, we can
complete the right-hand side to be the full Y , i.e. presenting also an instance
of X. Underneath this rule, we show one of its possible final versions, assuming
that preAuth is a value in the domain of document states. Such a rule would be
generated only if such a state is compatible with the presence of the association of
the document with a manager of Level 1, i.e. if the preAuth state is not associated
with some constraint forbidding the presence of the association with such a
manager. Also note that, in the policy in our original scenario, the constraint
c2 : X2 → Y2 from Figure 2 will filter out the rules derived from h4

2 and hQ′

5 .

6 Incremental update

We analyse now the problem of incrementally updating the rules in P (c) follow-
ing a policy revision where some positive constraint c : X → Y is replaced by a
positive constraint cu : Xu → Y u. In particular, we consider the following pos-
sible modifications, where the inequalities indicate the existence of an injection
from the smallest to the biggest graph. Moreover, the modifications are such
that they preserve the image of the original premise in the original conclusion,
for the common parts of X and Xu, and of Y and Y u.

1. (conclusion expansion) X = Xu, Y < Y u

90

1:Doc 1:Doc 2:Mgr Lv1

1:Doc 2:Mgr Lv1

1:Doc 3:Mgr Lv2

1:Doc :2Mgr

:3Mgr

Lv1

Lv2

1:Doc 3:Mgr Lv2

1:Doc 3:Mgr Lv2

2:Mgr Lv1

1:Doc 3:Mgr Lv2

2:Mgr Lv1

1:Doc 3:Mgr2:Mgr

Lv1 Lv2

4
2h

7
2h 7

1h
3
1h

6
3h5

4h 5
7h 6

7h

'
5
Qh '

6
Qh

'Q

'X2Q

4Q

5Q

3Q

6Q

1Q
2

'Xh 1
'Xh

construction.pdf

7Q

Fig. 10. The sets Q and H for the incremental procedure for c1 : X1 → Y1.

1:Doc 3:Mgr Lv2

2:Mgr Lv1

1:Doc :2Mgr

:3Mgr

Lv1

Lv2Auth

lastRule.pdf

1:Doc

3:Mgr Lv2

2:Mgr Lv1 1:Doc :2Mgr

:3Mgr

Lv1

Lv2AuthPreAuth

1:Doc :2Mgr

:3Mgr

Lv1

Lv2

lastRuleModified.pdf

Fig. 11. Ensuring constraint c1 (top) and one version updating the state (bottom).

2. (conclusion reduction) X = Xu, Y > Y u

3. (premise expansion) X < Xu, Y = Y u

4. (premise reduction) X > Xu, Y = Y u

5. (semantic reduction) X > Xu, Y < Y u

6. (semantic expansion) X < Xu, Y > Y u

7. (common expansion) X < Xu, Y < Y u

8. (common reduction) X > Xu, Y > Y u

Note that we do not admit modifications which simultaneously add some
elements and delete others from the premise or the conclusion of a constraint.
Hence, if a premise is expanded, the conclusion can be reduced only by removing
parts neither in the original nor the expanded premise.

We first consider the simple cases of premise expansion and conclusion re-
duction. From Figure 12 (left), modeling premise expansion, we observe that if
a graph G satisfies c non trivially, i.e. G has a subgraph which is a match for

91

Y , it will also satisfy cu under the same match. However, the rules in P (c) can
produce, in their right-hand sides, instances of Xu prior to creating the whole
Y . For such rules, we need to expand their left-hand sides with the difference
between Xu and Y . Moreover, we relax the NACs preventing the formation of
X prior to the final rules of P (c). More precisely, we extend each existing NAC
by the difference between Xu and X, to make it prevent the formation of Xu.

For the case of conclusion reduction, centre of Figure 12, we observe that
we can only remove elements which are not in X. In this case, the execution
of the algorithm in Section 5 would produce a completion Qu′ included in the
original completion Q′. Therefore, we update the set P (c) by removing all the
rules presenting, either in the left-hand side or in the right-hand side, graphs
greater than the difference between Y u and Q′. Moreover, each rule presenting
exactly the difference between Y u and X in the right-hand side (such rules have
to exist in P (c)), is now modified so as to also produce the missing part of X.
As a consequence, we have Proposition 1.

Proposition 1. The set U(P (c)) obtained by updating rules in P (c) on premise
expansion or conclusion reduction of c is equal to P (cu), the incremental proce-
dure for cu.

The combination of premise expansion and conclusion reduction defines what
is called semantic expansion, as M(c) ⊂M(cu). Indeed, considering the diagram
on the right of Figure 12, we observe that each graph G satisfying cu also satisfies
c. On the other hand, all graphs violating c because they present a match m :
X → G for X which is not extendable to a match for Y are included in M(cu),
if m cannot be extended to a match m′ : Xu → G either.

Xu

��>
>>

>>
>>

cu

&&
Xoo c //

��

Y

���
�

�
�

X

cu

''c //

��;
;;

;;
;;

Y

���
�
� Y uoo

���
�

�
�

Xu

m′

&&NNNNNNNNNNNN

cu

**
Xoo c //

m

��;
;;

;;
;;

Y

���
�

�
�

Y uoo

xxq q q q q q

G G G

Fig. 12. Premise expansion (left), conclusion reduction (center) and semantic expan-
sion (right).

The cases for premise reduction and conclusion expansion are discussed with
reference to Figure 13. In the first case (on the left), some G in M(c) can be not
in M(cu), if G provides a match for Xu but not for X and Y . The difference
between Xu and X can consist of the absence of some edges or of some nodes
(possibly together with the associated edges). If only edges are removed from X,
we consider that the evaluation of the completion Qu′ would use the same graph
X ′ as for the original constraint, but that these edges would now appear in Q′.
On the other hand, there would be graphs Qi in Q s.t. Xu ≤ Qi. Rules of the
form p : L→ R = Qi in P (c) must then be replaced with versions in which some

92

edge in X \Xu does not appear, while all the rules for which R ∩Xu 6= ∅ and
Xu ≮ R must be completed with a NAC of the form n : L → Xu. In the case
that nodes are removed in Xu, they would however appear in Qu′. Rules in P (c)
would therefore be modified creating, for each rule in which a node in X \Xu

appears, a version without that node. As before, NACs of the form n : L→ Xu

must be added to the other rules.
For the case of conclusion expansion, P (c) does not contain rules present-

ing graphs intermediate between Y and Y u, which therefore have to be added.
Moreover, we need to modify the final rules which produced Y , as they were the
only ones having X as a subgraph for R. Let LY be the set of left-hand sides for
final rules. We replace each rule of the form p : L→ R, L ∈ LY , with the set of
rules producing graphs intermediate between L and Y u, but not including X.

Again, semantic reduction (right of Figure 13) derives from the combination
of premise reduction and conclusion expansion and the relative modifications
can be derived from the composition of the two processes.

Xu

��>
>>

>>
>>

cu

&&// X
c //

��

Y

���
�

�
�

X

cu

''c //

��;
;;

;;
;;

Y

���
�
�

// Y u

���
�

�
�

Xu

&&NNNNNNNNNNNN

cu

**// X
c //

��;
;;

;;
;;

Y

���
�

�
�

// Y u

xxq q q q q q

G G G

Fig. 13. Premise reduction (left), conclusion expansion (center) and semantic reduction
(right).

In a similar way, common expansion and common reduction can be obtained
by combining the above processes, in the following order:

– For common expansion, expand Y to Y u first, and then expand X to Xu, in
both cases expanding the morphism so as to preserve the image of X in Y .

– For common reduction, reduce X to Xu first, and then reduce Y to Y u, in
both cases reducing the morphism so as to preserve the image of X in Y .

One wonders whether a similar construction can be defined for the case of
simultaneously removing and including elements in both premise and conclusion.
Figure 14 illustrates the problem with this. In order to maintain incrementality,
one would need to first identify the intersections X ′ and Y ′ between the original
and the updated versions, update under common reduction for X ′ → Y ′, and
then use common expansion to generate P (cu) for the new constraint cu : Xu →
Y u (left). But in this case there is no guarantee that Y ′ is connected, as required
in our model. A similar problem occurs if we first use common expansions and
then common reduction, where we need the intersections X ′′ and Y ′′ (right).
Example Considering the scenario in Section 4, Figure 6 presents a case of con-
clusion expansion, making stricter requests on the authorisation process. Follow-
ing the algorithm above, the construction of the new rules for this policy start

93

X ′

����
��

��
�

��

// Y ′

�� ��=
==

==
==

X ′ Xoo c // Y // Y ′

Xu

cu

55X
c // Y Y u Xu

OO

cu

55X ′′oo

OO

// Y ′′

OO

// Y u

OO

Fig. 14. Incorrect constructions for simultaneous removal and increment.

from the identification of the rules with L ∈ LY1 ; in this case rule r2 : L2 → R2

in Figure 5 (for the sake of the discussion, we omit the consideration of modifi-
cations of NACs). We then need to replace r2 with the set of rules constructing
the intermediate graphs between L2 and the modified conclusion Y6, with the
proviso that X can appear only in the right-hand side of the rule building the
whole Y6. Figure 15 shows the result of replacing rule r2 with rules r′2 and r22.

1:Doc

Auth

:Mgr

:Mgr

Lv1

Lv2

:Mgr Lv1

1:Doc

3:Mgr Lv2

2:Mgr Lv1 1:Doc

3:Mgr Lv2

2:Mgr Lv1

Auth

2L 2R

2r

1:Doc 3:Mgr

:Mgr

Lv1

Lv2

2:Mgr Lv1

'

2R

1:Doc 3:Mgr

:Mgr

Lv1

Lv2

2:Mgr Lv1

2

2R
2

2L

'

2r

2

2r

Fig. 15. Revising rule r2 from the scenario.

7 Conclusions and future work

We have presented an approach to the construction of incremental procedures
ensuring the application of rules consistently with atomic constraints and to the
modification of such procedures in an incremental way after the modification of
the original constraints. The approach works under a number of assumptions,
which are reasonably met in practical cases. First, conclusions in constraints
are defined by connected graphs, and with a specific relation with X. Second,
constraint updates preserve the images for the preserved elements in the premise
(i.e. we do not deal with revocation [6]). Third, constraints and rules are typed
according to a metamodel maintaining distinct finite domains for each attribute

94

The procedures are defined as sets of rules, which can be exploited in different
contexts, or organised in transformation units.

Several lines of research can be pursued from here. For example, modifications
have been considered only for rules in an incremental procedure. However, a rule
p : L → R can be consistent with a constraint c : X → Y even if R > Y , or
R < X ′, in which case p 6∈ P (c). The general case of modifying such rules must
then be studied. Also, we prevent rules from creating matches for X if they
are not final rules. However, one could study situations in which to allow the
creation of further matches than the one for which the extension to Y is created
and define repair transformation units for these situations. We are also interested
in more general cases relaxing conditions on Y . If we allow Y to be disconnected,
then the construction in Figure 14 could be exploited for simultaneous reduction
and expansion in premise and conclusion. Finally, one needs to consider what
happens when arbitrary morphisms are considered instead of only injective ones.
This problem can be investigated in versions where arbitrary morphisms can be
used for matches of constraints, of rules, or both.

References

1. P. Bottoni, A. Fish, and F. Parisi Presicce. Preserving constraints in horizontal
model transformations. In Proc. GT-VMT 2010, volume 29 of ECEASST, 2010.

2. H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Theory of constraints and
application conditions: From graphs to high-level structures. Fundam. Inform.,
74(1):135–166, 2006.

3. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, 2006.

4. K. Ehrig, J. M. Küster, G. Taentzer, and J. Winkelmann. Generating instance
models from meta models. In Proc. FMOODS 2006, volume 4037 of LNCS, pages
156–170. Springer, 2006.

5. A. Habel and K.-H. Pennemann. Correctness of high-level transformation sys-
tems relative to nested conditions. Mathematical Structures in Computer Science,
19(2):245–296, 2009.

6. Å. Hagström, S. Jajodia, F. Parisi-Presicce, and D. Wijesekera. Revocations-a
classification. In CSFW, pages 44–58, 2001.

7. M. Janota, V. Kuzina, and A. Wasowski. Model construction with external con-
straints: An interactive journey from semantics to syntax. In Proc. MoDELS 2008,
pages 431–445, 2008.

8. M. Koch, L. V. Mancini, and F. Parisi-Presicce. Graph-based specification of access
control policies. J. Comput. Syst. Sci., 71(1):1–33, 2005.

9. M. Koch and F. Parisi-Presicce. Uml specification of access control policies and
their formal verification. Software and System Modeling, 5(4):429–447, 2006.

10. F. Orejas. Symbolic attributed graphs. In Proc. GraMoT 2010, to appear.
11. A. Rensink. Representing first-order logic using graphs. In Proc. ICGT, volume

3256 of LNCS, pages 319–335. Springer, 2004.
12. Y. Wei, C. Wang, and W. Peng. Graph transformations for the specification of

access control in workflow. In Proc. WiCOM ’08, pages 1–5, 2008.

95

96

Minimizing Finite Automata with

Graph Programs⋆

Detlef Plump1, Robin Suri2, and Ambuj Singh3

1 The University of York, UK
2 Indian Institute of Technology Roorkee, India
3 Indian Institute of Technology Kanpur, India

Abstract. GP (for Graph Programs) is a rule-based, nondeterminis-
tic programming language for solving graph problems at a high level of
abstraction, freeing programmers from dealing with low-level data struc-
tures. In this case study, we present a graph program which minimizes
finite automata. The program represents an automaton by its transition
diagram, computes the state equivalence relation, and merges equivalent
states such that the resulting automaton is minimal and equivalent to
the input automaton. We illustrate how the program works by a run-
ning example and argue that it correctly implements the minimization
algorithm of Hopcroft, Motwani and Ullman.

Key words: Graph programs, automata minimization, rule-based program-
ming, correctness proofs

1 Introduction

GP is an experimental nondeterministic programming language for high-level
problem solving in the domain of graphs. The language is based on conditional
rule schemata for graph transformation, freeing programmers from implementing
and handling low-level data structures for graphs. The prototype implementation
of GP compiles graph programs into bytecode for an abstract machine, and comes
with a graphical editor for programs and graphs. We refer to [7] for an overview
of the language and to [6] for a description of the current implementation.

In this paper, we present a case study about solving a problem with GP that
as first sight may not appear to be a graph problem: the minimization of finite
automata. It is natural though to represent finite automata by their transition
diagrams and to view the minimization process as a sequence of transformation
steps on these diagrams. Programmers can visually construct corresponding rule
schemata and control the application of these schemata by GP’s commands.

We implement the minimization algorithm of Hopcroft, Motwani and Ullman
[4] (see also [9]). This algorithm first computes the indistinguishability relation
among states, called state equivalence, and then merges equivalent states to

⋆ Work of the second and third author was done while visiting the University of York,
funded by the Department of Computer Science.

97

obtain a minimal automaton that is equivalent to the input automaton. Two
states are equivalent if processing strings from either state will have the same
result with respect to acceptance. While state equivalence is usually computed
by a table-filling algorithm, in our case we directly connect equivalent states
with special edges. Once the equivalent states have been determined, we merge
them by redirecting edges and removing isolated nodes.

In Section 5, we argue that our implementation is correct in that the graph
program will transform every input automaton into an equivalent and minimal
output automaton. This involves showing that the program terminates, that it
correctly computes the state equivalence relation, and that the merging phase
produces an automaton in which each equivalence class of states is represented
by a unique state.

2 Graph Programs

We briefly review GP’s conditional rule schemata and control constructs. Tech-
nical details (including the abstract syntax and operational semantics of GP)
can be found in [7], as well as a number of example programs.

Conditional rule schemata are the “building blocks” of graph programs: a
program is essentially a list of declarations of conditional rule schemata together
with a command sequence for controlling the application of the schemata. Rule
schemata generalise graph transformation rules in the double-pushout approach
with relabelling [2], in that labels can contain expressions over parameters of
type integer or string. Figure 1 shows a conditional rule schema consisting of the
identifier bridge followed by the declaration of formal parameters, the left and
right graphs of the schema, the node identifiers 1, 2, 3 specifying which nodes
are preserved, and the keyword where followed by the condition not edge(1, 3).

bridge(a, b, x, y, z : int)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a + b

a b

where not edge(1, 3)

Fig. 1: A conditional rule schema

In the GP programming system [6], rule schemata are constructed with a
graphical editor. Labels in the left graph comprise only variables and constants
because their values at execution time are determined by graph matching. The
condition of a rule schema is a Boolean expression built from arithmetic ex-
pressions and the special predicate edge, where all variables occurring in the
condition must also occur in the left graph. The predicate edge demands the

98

(non-)existence of an edge between two nodes in the graph to which the rule
schema is applied. For example, the expression not edge(1, 3) in the condition of
Figure 1 forbids an edge from node 1 to node 3 when the left graph is matched.

Conditional rule schemata represent possibly infinite sets of conditional graph
transformation rules, and are applied according to the double-pushout approach
with relabelling. A rule schema L⇒ R with condition Γ represents conditional
rules 〈〈Lα ← K → Rα〉, Γ α,g〉, where K consists of the preserved nodes (which
are unlabelled) and Γ α,g is a predicate on graph morphisms g : Lα → G (see
[7]).

GP’s commands for controlling rule-schema applications include the non-
deterministic one-step application of a rule schema, the non-deterministic one-
step application of a set {r1, . . . , rn} of rule schemata, the sequential composition
P ; Q of programs P and Q, the as-long-as-possible iteration P ! of a program P ,
and the branching statement if C then P else Q for programs C, P and Q. The
first four of these commands have the expected effects. The branching command
first checks if executing C on the current graph G can produce a graph; if this
is the case, then P is executed on G, otherwise Q is executed on G.

1

2

3

4

1 2

3

→
bridge! 1

2

3

4

1 2

3

36

5

Fig. 2: An execution of the program bridge!

For example, Figure 2 shows an execution of the program bridge!. This
program makes an input graph transitive in that for every directed path of the
input, the output graph contains an edge from the first node to the last node of
the path. Note that the edge with label 6 can be produced by applying bridge
in two different ways, performing either the addition 3 + 3 or 1 + 5. In general,
a program may produce many different output graphs for the same input. The
semantics of GP assigns to every input graph the set of all possible output graphs
(see [7, 8]).

3 Automata Minimization

Our starting point is the abstract minimization algorithm of Hopcroft, Motwani
and Ullman [4] (see also [9]). To fix notation, we consider a deterministic finite
automaton (DFA) as a system A = (Q, Σ, δ, q0, F) where Q is the finite set of
states, Σ is the input alphabet, δ : Q ×Σ → Q is the transition function, q0 is
the initial state, and F is the set of final (or accepting) states. The extension of
δ to strings is denoted by δ∗ : Q×Σ∗ → Q.

99

Definition 1 States p and q of an automaton are indistinguishable if for all
strings w ∈ Σ∗, δ∗(p, w) ∈ F if and only if δ∗(q, w) ∈ F .

We say that p and q are distinguishable if they are not indistinguishable,
that is, there must be some string w ∈ Σ∗ such that either δ(p, w) ∈ F and
δ(q, w) /∈ F , or vice-versa. Clearly, indistinguishability of states is an equivalence
relation. Henceforth we refer to this relation simply as state equivalence.

The following minimization algorithm first marks all unordered pairs of dis-
tinguishable states of an automaton A—thus representing state equivalence im-
plicitly by all unmarked pairs of states. In a second phase, equivalent states are
merged to form the states of the minimal automaton Â.

Algorithm 1

Marking phase

Stage 1:
for each p ∈ F and q ∈ Q− F do mark the pair {p, q}
Stage 2:
repeat

for each non-marked pair {p, q} do
for each a ∈ Σ do

if {δ(p, a), δ(q, a)} is marked then mark {p, q}
until no new pair is marked

{For each state p, the equivalence class of p consists of all states q for which the
pair {p, q} is not marked.}

Merging phase

Construct Â = (Q̂, Σ, δ̂, q̂0, F̂) as follows:
– Q̂ consists of the state equivalence classes.
– q̂0 is the equivalence class containing q0.
– For each X ∈ Q̂ and a ∈ Σ, pick any p ∈ X and set δ̂(X, a) = Y , where Y

is the equivalence class containing δ(p, a).
– F̂ consists of the equivalence classes containing states from F .

⊓⊔
By the following lemma, the marking phase of Algorithm 1 correctly com-

putes the state equivalence.

Lemma 1 ([4, 9]) A pair of states is not marked by the marking phase of Al-
gorithm 1 if and only if the states are equivalent.

Using Lemma 1, the correctness of Algorithm 1 can be established.

Theorem 1 ([4]). The automaton Â produced by Algorithm 1 accepts the same
language as A and is minimal.

In the next section, we present an implementation of Algorithm 1 in GP. The
correctness of the implementation is proved in Section 5.

100

4 Implementation in GP

We represent automata by their transition diagrams, that is, graphs in which
nodes represent states and edges represent transitions. In the following, the terms
‘node’ and ‘state’, respectively ‘edge’ and ‘transition’ will often be used synony-
mously. We make the following assumptions about an input automaton:

1. The states have labels of the form x i, where x is some integer and i ∈ {0, 1}.
The component i is called a tag4, we require that final states have tag 1 and
that non-final states have tag 0. The integer x is arbitrary, except that the
initial state, and only this state, has a label of the form 1 i.

2. The transitions are labelled with strings which represent the symbols in Σ.
3. To keep the presentation simple, we assume that all states are reachable

from the initial state. (It is straightforward to write a graph program that
removes all unreachable states.)

The graph program implementing Algorithm 1 is shown in Figure 3, where
mark, merge and clean up are macros. The rule schemata contained in the
macros are discussed below.

main = mark; merge; clean up

mark = distinguish!; propagate!; equate!

merge = init; add tag!; (choose; add tag!)!; disconnect!; redirect!

clean up = remove edge!; remove node!; untag!

Fig. 3: GP program for automata minimization

We will explain each stage of the program in Figure 3, using as running
example the minimization of the automaton in Figure 4. This automaton accepts
all strings over {a, b} that end in two b’s.

1 0

3 0 4 1

2 0b

a b

a

b

a

a b

Fig. 4: Sample automaton with alphabet {a, b}

4 In general, a label in GP has the form x1 x2 . . . xnwhere each xi is either an integer
or a character string.

101

4.1 Marking Phase

We first need to determine which states are equivalent. For this, we implement
the marking phase of Algorithm 1 in the macro mark. The macro’s rule schemata
are shown in Figure 5.

distinguish(x, y, i, j : int)

x i

1

y j

2

⇒ x i

1

y j

2

1

where i 6= j and not edge(1, 2, 1)

propagate(x, y, u, v, i, j, m, n : int; s : str)

x i

1

u m

3

y j

2

v n

4

s

s

1 ⇒

x i

1

u m

3

y j

2

v n

4

s

s

11

where not edge(1, 2, 1)
all matches

equate(x, y, i, j : int)

x i

1

y j

2

⇒ x i

1

y j

2

0

where not edge(1, 2, 1) and not edge(1, 2, 0)

Fig. 5: Rule schemata of the macro mark

The subprogram distinguish! implements Stage 1 of Algorithm 1. Given
two states such that one is a final state and the other is not, by assumption, the
states carry tags 1 and 0 respectively. In this case we mark the states as dis-
tinguishable by connecting them with two 1-labelled edges of opposite direction
(drawn as a single edge with two arrowheads). The condition not edge(1, 2, 1) in
distinguish forbids a 1-labelled edge between nodes 1 and 2 to make sure that
distinguish! terminates. The ternary edge predicate refines the binary predi-
cate discussed in Section 2 in that it allows to specify the label of the forbidden
edge.5 See Figure 6 for the effect of distinguish! on the sample automaton,
where we typeset new labels in italics.

5 This predicate is not yet implemented in GP but will be included in the next release.

102

1 0

3 0 4 1

2 0b

a b

a

b

a

a b
1

1

1

Fig. 6: Sample automaton after distinguish!

Next, the rule schema propagate looks for pairs of states that have not yet
been discovered as distinguishable (and so are not linked by a 1-edge). The states
must have outgoing transitions with the same symbol, leading to states that
have already been discovered as distinguishable. Again, a newly discovered pair
of distinguishable states is marked by 1-labelled edges with opposite directions.
The subprogram propagate! thus implements the repeat-loop of Algorithm 1.

Rule schema propagate has the ‘all matches’ attribute, meaning that nodes
of the schema can be merged before the schema is applied. An alternative view is
that propagate can be applied using non-injective graph morphisms. (See [1] for
details and the equivalence of both views.) For the benefit of the reader, Figure
7 lists the standard rule schemata represented by propagate that are possibly
applicable to an automaton. Other schemata obtained by node merging can be
ruled out because our automata do not contain 1-labelled loops and do not have
states with multiple outgoing transitions labelled with the same symbol.

Lemma 1 guarantees that after termination of propagate!, all pairs of distin-
guishable states have been discovered. Thus we can mark the remaining pairs as
equivalent, linking their states with 0-labelled edges in the subprogram equate!.
The effect of propagate! and equate! on the sample automaton is shown in
Figure 8a and Figure 8b.

4.2 Merging Phase

After termination of the macro mark, the states of the input automaton are par-
titoned into equivalence classes: these are the subsets of states that are pairwise
linked by 0-labelled edges. Next we have to merge all the states in each partition
into one state representing the partition. We need to ensure that all transitions
to states that are not representing partitions are redirected to the unique states
representing the partitions. Transitions outgoing from non-representative states
can be removed, as can these states themselves. The merging process is imple-
mented by the macro merge, whose rule schemata are shown in Figure 9.

We first consider the partition containing the initial state. The rule schema
init marks this state as the unique representative of its partition by adding an

103

propagate 1(x, y, u, v, i, j, m, n : int; s : str)

x i

1

u m

3

y j

2

v n

4

s

s

11 ⇒

x i

1

u m

3

y j

2

v n

4

s

s

111

where not edge(1, 2, 1)

propagate 2(x, u, v, i, m, n : int; s : str)

x i

1

u m

3

v n

4

s

s

11 ⇒

x i

1

u m

3

v n

4

s

s

11
1

where not edge(1, 4, 1)

propagate 3(x, u, v, i, m, n : int; s : str)

x i

1

u m

3

v n

4

s

1 s ⇒

x i

1

u m

3

v n

4

s

1

1
s

where not edge(1, 3, 1)

Fig. 7: Rule schemata represented by propagate using ‘all matches’

extra 0-tag to the state’s label. Then the loop add tag! marks all other states
in the initial partition with an extra 1-tag. This marking procedure is repeated
for all other partitions, by the nested loop (choose; add tag!)!. In each iteration
of the outer loop, some unmarked state is chosen as the unique representative
of its partition and subsequently all other states in the partition are marked as
non-representative states.

After all states have been marked as representatives or non-representatives,
the rule schemata disconnect and redirect take care of the transitions leav-

104

1 0

3 0 4 1

2 0b

a b

a

b

a

a b
1

1

1

1

1

(a) After propagate!

1 0

3 0 4 1

2 0b

a b

a

b

a

a b
1

1

1

1

10

(b) After equate!

1 0 0

3 0 1 4 1

2 0b

a b

a

b

a

a b
1

1

1

1

10

(c) After init; add tag!

1 0 0

3 0 1 4 1 0

2 0 0b

b

b

1

1

1

1

10

a

a

a

(d) After redirect!

1 0 0

3 0 1 4 1 0

2 0 0
b

b

b

a

a

a

(e) After remove edge!

1 0

4 1

2 0
b

b

b

a

a

a

(f) After untag!

Fig. 8: Snapshots of the sample automaton

105

init(i : int)

1 i

1

⇒ 1 i 0

1

add tag(x, y, i, j : int)

x i 0

1

y j

2

0 ⇒ x i 0

1

y j 1

2

0

choose(x, i : int)

x i

1

⇒ x i 0

1

disconnect(x, u, i, m, p : int; s : str)

u m p

2

x i 1

1

s ⇒

u m p

2

x i 1

1

all matches

redirect(x, y, u, i, j, m : int; s : str)

u m 0

2

x i 1

1

y j 0

3

s

0

⇒

u m 0

2

x i 1

1

y j 0

3

s

0

all matches

Fig. 9: Rule schemata of the macro merge

106

ing and reaching non-representative states. The loop disconnect! removes all
outgoing transitions (including loops), as these are no longer needed, while
redirect! redirects each transition reaching a non-representative state to the
unique representative of that state’s partition. Note that by the ‘all matches’
attribute of redirect, transitions between equivalent states become loops at
the representatives. The effect of init; add tag! and the whole macro merge on
the sample automaton is shown in Figure 8c and Figure 8d.

Finally, the rule schema clean up exhaustively applies the rule schemata
shown in Figure 10. The loop remove edge! deletes all integer-labelled edges,
as these auxiliary structures are no longer needed. Then remove node! deletes
all non-representative states—these states have become isolated. The remaining
states are the unique representatives of their equivalence classes. Last but not
least, untag! removes the auxiliary second tag of each state so that the remaining
tag indicates, as before, whether a state is final or not. The resulting automaton
is the unique minimal automaton equivalent to the input automaton (see next
section). The automata resulting from remove edge! and the overall program
in our running example are shown in Figure 8e and Figure 8f.

remove edge(x, y, i, j, k, m, n : int)

x i k

1

y j m

2

n ⇒ x i k

1

y j m

2

remove node(x, i : int)

x i 1

1

⇒ ∅

untag(x, i : int)

x i 0

1

⇒ x i

1

Fig. 10: Rule schemata of the macro clean up

5 Correctness of the Implementation

In this section we prove some propositions which substantiate that the graph
program of Figure 3 correctly implements Algorithm 1.

107

Proposition 1 The program of Figure 3 terminates for every input automaton.

Proof. By the conditions of the rule schemata distinguish and propagate,
each application of these schemata reduces the number of state pairs that are
not linked by 1-labelled edges of opposite direction. Similarly, each application
of equate reduces the number of state pairs that are not linked by 0-labelled
edges of opposite direction. Thus the macro mark terminates.

Each application of the rule schema add tag reduces the number of states
that do not have a label of the form x i 1, where x and i are integers. Hence
both the first loop add tag! and the nested loop (choose; add tag!)! ter-
minate (note that choose does not affect labels of the form x i 1). The loop
disconnect! is trivially terminating as each application of disconnect reduces
the number of edges in a graph. The loop redirect! terminates because each
application of redirect reduces the sum of the degrees of nodes with a label of
the form x i 1. Thus the macro merge terminates, too.

The termination of the three loops in the macro clean up is similarly easy
to see. The rule schemata of the first two loops reduce the number of edges
respectively the number of nodes, and each iteration of the loop untag! reduces
the number of nodes with three tags. ⊓⊔

Proposition 2 The macro mark links two distinct states by a 0-labelled edge if
and only if the states are equivalent.

Proof. The loop distinguish! implements stage 1 of the marking phase of
Algorithm 1 in that it links final states with non-final states by a 1-labelled edge,
marking such pairs as non-equivalent. Also, propagate! implements stage 2 of
the marking phase: the three standard rule schemata represented by propagate
(see Figure 7) cover the possible relations between the state pairs {p, q} and
{δ(p, a), δ(q, a)} in the repeat-loop of Algorithm 1. In particular, they cover the
special cases p = δ(p, a), q = δ(q, a), p = δ(q, a) and q = δ(p, a). Hence Lemma
1 implies that after termination of propagate!, two states are linked by a 1-
labelled edge if and only if they are not equivalent. The loop equate! then links
two distinct states by a 0-labelled edge if and only if they are not linked by a
1-labelled edge, implying the proposition. ⊓⊔

Proposition 3 After termination of the macro clean up, two states are equiv-
alent if and only if they are equal.

Proof. Consider an equivalence class of states of the input automaton. Exactly
one state in this class is selected either by the rule schema init (in the case of the
initial state’s class) or by the rule schema choose (in all other cases), and a 0-tag
is appended to the state’s label. Then the loop add tag! marks all other states
in the equivalence class with an extra 1-tag. Subsequently, disconnect! removes
all transitions outgoing from 1-tagged states and redirect! redirects away all
transitions leading to 1-tagged states. Hence, after termination of the macro
merge, 1-tagged states can be incident only to edges labelled with 0 or 1. All
these edges are deleted by the loop remove edge!, so the 1-tagged states become

108

isolated and are eventually removed by remove node!. Thus, upon termination
of the macro clean up, from each equivalence class exactly one state remains in
the resulting automaton. ⊓⊔

Proposition 4 For every input automaton A, the automaton Â produced by the
program of Figure 3 is equivalent to A and minimal.

Proof. By Theorem 1, Proposition 1 and Proposition 2, it suffices to show that
the subprogram merge; clean up correctly implements the merging phase of
Algorithm 1. This can be seen as follows:

– By Proposition 3, each equivalence class of A is represented by its unique
representative element in Â.

– The rule schema init selects the initial state of A as the representative of
its class and untag makes this state the initial state of Â.

– Consider any equivalence class of states X , its representative p ∈ X and
any a ∈ Σ. If δ(p, a) is the representative of its equivalence class, then
both states are marked with a 0-tag in merge and the transition from p to
δ(p, a) is preserved by the subprogram disconnect!; redirect!. Otherwise,
if δ(p, a) does not represent its class, then it is marked with a 1-tag in merge.
In this case redirect! redirects the transition p → δ(p, a) to the unique
representative of the class of δ(p, a). Hence δ̂(X, a), the equivalence class of
δ(p, a), does not depend on the choice of p and thus is well-defined.

– In an equivalence class containing a final state, all states are final as otherwise
the loop distinguish! would have linked the non-final states with the final
state by 1-labelled edges. Hence the representative of such a class is a final
state.

⊓⊔

6 Conclusion

We have shown how to minimize finite automata with rule-based, visual program-
ming. Programmers need not be concerned with low-level data structures such
as state tables but can directly manipulate the transition diagrams of automata.
Moreover, GP’s rule schemata and control constructs provide a convenient lan-
guage for reasoning about the correctness of the implementation. Last but not
least, the all matches option for rule schemata has proved to be useful for
keeping the number of rule schemata small, and an extended edge predicate has
been crucial for forbidding particular edges in the conditions of rule schemata.

The macro merge merges equivalent states by choosing representatives of
equivalence classes, removing and redirecting transitions, and removing isolated
states. A simpler implementation would use non-injective rule schemata to merge
states directly—but such rule schemata are not available in GP. Non-injective
rule schemata are also useful in other applications and may be realised in a
future version of GP.

109

Finally, this case study could be extended by implementing more efficient
automata minimization algorithms. We chose the algorithm of Hopcroft, Mot-
wani and Ullman because of its simplicity, but its cubic running time is not
optimal. More efficient algorithms include the quadratic algorithm of Hopcroft
and Ullman [5] and Hopcroft’s nlogn algorithm [3].

Acknowledgement. We are grateful for the comments of an anonymous referee
which helped to improve the presentation of this paper.

References

1. Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph trans-
formation revisited. Mathematical Structures in Computer Science, 11(5):637–688,
2001.

2. Annegret Habel and Detlef Plump. Relabelling in graph transformation. In Proc.
International Conference on Graph Transformation (ICGT 2002), volume 2505 of
Lecture Notes in Computer Science, pages 135–147. Springer-Verlag, 2002.

3. John E. Hopcroft. An nlogn algorithm for minimizing the states in a finite au-
tomaton. In Z. Kohavi, editor, The Theory of Machines and Computations, pages
189–196. Academic Press, 1971.

4. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley, third edition, 2007.

5. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

6. Greg Manning and Detlef Plump. The GP programming system. In Proc. Graph
Transformation and Visual Modelling Techniques (GT-VMT 2008), volume 10 of
Electronic Communications of the EASST, 2008.

7. Detlef Plump. The graph programming language GP. In Proc. Algebraic Informatics
(CAI 2009), volume 5725 of Lecture Notes in Computer Science, pages 99–122.
Springer-Verlag, 2009.

8. Detlef Plump and Sandra Steinert. The semantics of graph programs. In Proc. Rule-
Based Programming (RULE 2009), volume 21 of Electronic Proceedings in Theoret-
ical Computer Science, pages 27–38, 2010.

9. Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, 2009.

110

A Visual Interpreter Semantics for Statecharts
Based on Amalgamated Graph Transformation

Ulrike Golas, Enrico Biermann, Hartmut Ehrig, and Claudia Ermel

Technische Universität Berlin, Germany
ugolas|enrico|ehrig|lieske@cs.tu-berlin.de

Abstract. Several different approaches to define the formal operational
semantics of statecharts have been proposed in the literature, includ-
ing visual techniques based on graph transformation. These visual ap-
proaches either define a compiler semantics (translating a concrete stat-
echart into a semantical domain) or they define an interpreter using
complex control structures. Based on the existing visual semantics defini-
tions, it is difficult to apply the classical theory of graph transformations
to analyze behavioral statechart properties due to the complex control
structures. In this paper, we define an interpreter semantics for state-
charts based on amalgamated graph transformation where rule schemes
are used to handle an arbitrary number of transitions in orthogonal states
in parallel. We build on an extension of the existing theory of amalga-
mation from binary to multi-amalgamation including nested application
conditions to control rule applications for automatic simulation. This
is essential for the interpreter semantics of statecharts. The theory of
amalgamation allows us to show termination of the interpreter seman-
tics of well-behaved statecharts, and especially for our running example,
a producer-consumer system.

1 Introduction and Related Work

In [1], Harel introduced statecharts by enhancing finite automata by hierarchies,
concurrency, and some communication issues. Over time, many versions with
slightly differing features and semantics have evolved. In the UML specification
[2], the semantics of UML state machines is given as a textual description accom-
panying the syntax, but it is ambiguous and explained essentially by examples.
In [3], a structured operational semantics (SOS) for UML statecharts is given
based on the preceding definition of a textual syntax for statecharts. The se-
mantics uses Kripke structures and an auxiliary semantics using deduction, a
semantical step is a transition step in the Kripke structure. This semantics is
difficult to understand due to its non-visual nature. The same problem arises in
[4], where labeled transition systems and algebraic specification techniques are
used.

There are also different approaches to define a visual rule-based semantics of
statecharts. One of the first was [5], where for each transition t a transition pro-
duction pt is derived describing the effects of the corresponding transition step.

111

A similar approach is followed in [6], where first a state hierarchy is constructed
explicitly, and then a semantical step is given by a complex transformation unit
constructed from the transition rules of a maximum set of independently en-
abled transitions. In [7], in addition, class and object diagrams are integrated.
The approach highly depends on concrete statechart models and is not a general
interpreter semantics for statecharts. Moreover, problems arise for nesting hier-
archies, because the resulting situation is not fixed but also depends on other
current or inactive states. In [8], the hierarchies of statecharts are flattened to
a low-level graph representing an automaton defining the intended semantics of
the statechart model. This is an indirect definition of the semantics, and again
dependent on the concrete model, since the transformation rules have to be
specified according to this model.

In [9], Varró defines a general interpreter semantics for statecharts. His in-
tention is to separate syntactical and static semantic concepts (like conflicts,
priorities etc.) of statecharts from their dynamic operational semantics, which is
specified by graph transformation rules. To this end, he uses so-called model tran-
sition systems to control the application of the operational rules, which highly
depend on additional structures encoding activation or conflicts of transitions
and states.

The main advantage of our solution is that we do not need external control
structures to cover the complex statecharts semantics: we define a state transition
mainly by one interaction scheme followed by some clean-up rules. Therefore, our
model-independent definition based on rule amalgamation is not only visual and
intuitive but allows us to show termination and forms a solid basis for applying
further graph transformation-based analysis techniques.

The rest of the paper is structured as follows. Section 2 gives a brief intro-
duction to our model of statecharts as typed attributed graphs. In Section 3, we
review the basic ideas of algebraic graph transformation [10] and give a short
introduction to amalgamated transformation based on [11], which is used for the
operational semantics of statecharts in Section 4. Based on the given semantics,
we discuss the formal analysis of termination of semantical steps in statecharts.
The operational semantics is demonstrated along a sample statechart modeling
a producer-consumer system in Section 5. Finally, Section 6 concludes our paper
and considers future work directions.

2 Modeling of Statecharts

In this section, we model statecharts by typed attributed graphs. We restrict
ourselves to the most interesting parts of the statechart diagrams: we allow
orthogonal regions as well as state nesting. But we do not handle entry and exit
actions on states, nor extended state variables, and we allow guards only to be
conditions over active states.

In Fig. 1, the sample statechart ProdCons is depicted modeling a producer-
consumer system. When initialized, the system is in the state prod, which has
three regions. There, in parallel a producer, a buffer, and a consumer may act.

112

error

call

repair

prod

produced

prepare

empty

full

wait

consumed

arrive

finish

repair

finish

exit
next

produce
[empty]
/incbuff

fail

incbuff decbuff next
consume

[full]
/decbuff

Fig. 1. Sample statechart ProdCons

The produ-
cer alternates
between the
states produced

and prepare,
where the tran-
sition produce

models the ac-
tual production
activity. It is
guarded by a condition that the parallel state empty is also current, meaning
that the buffer is empty and may receive a product, which is then modeled by
the action incbuff denoted after the /-dash. Similarly to the producer, the buffer
alternates between the states empty and full, and the consumer between wait

and consumed. The transition consume is again guarded by the state full and
followed by a decbuff-action emptying the buffer.

Two possible events may happen causing a state transition to leave the state
prod: the consumer may decide to finish the complete run; or there may be a fail-
ure detected after the production leading to the error-state. Then, the machine
has to be repaired before the error-state can be exited via the corresponding
exit-transition and the standard behavior in the prod-state is executed again.

For our statechart language, we use typed attributed graphs, which are an
extension of typed graphs by attributes [10]. We do not give details here, but use
an intuitive approach to attribution, where the attributes of a node are given in
a class diagram-like style. For the values of attributes in the rules we can also
use variables.

SM
name:String

R P

E
name:String

T S
name:String
isInitial:Bool

isFinal:Bool

TE
name:String

A
name:String

G

0..1

0..1 0..11

1 1

1

0..1

1
0..1

1

1

1..n

1..n

region behaviour

currentnew

regions

states

trigger

action guard

begin

end

condition

next

sub

Fig. 2. Type graph TGSC for statecharts

The type graph
TGSC is given in
Fig. 2. We use mul-
tiplicities to denote
some constraints di-
rectly in the type
graph. To obtain valid
statechart models,
some more constraints
are needed which are
described in the fol-
lowing.

Each diagram consists of exactly one statemachine SM containing one or more
regions R. A region contains states S, where state names are unique within each
region. A state may again contain one or more regions. Each region is contained
in either exactly one state or the statemachine. States may be initial (attribute
value isInitial = true) or final (attribute value isFinal=true), each region has
to contain exactly one initial and at most one final state, and final states cannot
contain regions. Edge type sub is only necessary to compute all substates of a

113

P

TE

name=null

SM

name=”sm”

R

S

name=”error”
isInitial=false
isFinal=false

S

name=”prod”
isInitial=true
isFinal=false

T

E

name=”exit”

S

name=”final”
isInitial=false
isFinal=true

R

S

name=”call”
isInitial=true
isFinal=false

S

name=”repair”
isInitial=false
isFinal=false

S

name=”final”
isInitial=false
isFinal=true

T

E

name=”arrive”

T

E

name=”finish”

T

E

name=”repair”

T

E

name=”fail”

R

S

name=”produced”
isInitial=true
isFinal=false

T

E

name=”next”

T

E

name=”produce”
G

A

name=”incbuff”

S

name=”prepare”
isInitial=false
isFinal=false

R

S

name=”empty”
isInitial=true
isFinal=false

S

name=”full”
isInitial=false
isFinal=false

R

S

name=”wait”
isInitial=true
isFinal=false

S

name=”consumed”
isInitial=false
isFinal=false

T

E

name=”next”

T

E

name=”consume”

G

A

name=”decbuff”

T

E

name=”decbuff”

T

E

name=”incbuff”

TE

name=”finish”

end

begin

begin

end

begin end begin end
begin end

begin endbegin
end

begin
end

begin
end

beginend

begin
end

begin

end

Fig. 3. Statechart ProdCons in abstract syntax

state, which we need for the definition of the semantics. This relation is computed
in the beginning using the states- and regions-edges.

A transition T begins and ends at a state, is triggered by an event E, and may
be restricted by a guard G and followed by an action A. A guard has one ore more
states as condition. There is a special event with attribute value name="exit"

reserved for exiting a state after the completion of all its orthogonal regions,
which cannot have a guard condition. Final states cannot be the beginning of a
transition and their name has to be "name=final". Transitions cannot link states
in different orthogonal regions of the same superstate.

A pointer P describes the active states of the statemachine. Note that newly
inserted current states are marked by the new-edge, while for established current

114

states the current-edge is used (which is assumed to be the standard type and
thus not marked in our diagrams). This is due to our semantics definition, where
we need to distinguish between states that were current before and states that
just became current in the last state transition. Trigger elements TE describe
the events which have to be handled by the statemachine. Note that this is not
necessarily a queue because of orthogonal states, but for simplicity we call it
event queue. There are at least the empty trigger element with attribute value
name=null and exactly one pointer in each diagram.

In Fig. 3, the sample statechart ProdCons from Fig. 1 is depicted in abstract
syntax. Nodes P and TE are added, which have to exist for a valid statechart
model but are not visible in the concrete syntax. For simulating statechart runs,
the event queue of the statechart (consisting of only one default element named
null in Fig. 3) can be filled by events to be processed (see Fig. 9 in Section 5 for
a possible event queue for our sample statechart).

3 Introduction to Amalgamated Graph Transformation

In this section, we review the basic ideas of algebraic graph transformation [10]
and give a short introduction into amalgamated transformation based on [11],
to be used for the interpreter semantics of statecharts in Section 4.

A graph grammar GG = (RS, SG) consists of a set of rules RS and a start
graph SG. A rule p = (L l←− K

r−→ R, ac) consists of a left-hand side L, an
interface K, a right-hand side R, two injective graph morphisms L l←− K and
K

r−→ R, and an application condition ac on L. Applying a rule p to a graph G
means to find a match m of L in G, given by a graph morphism L

m−→ G which
satisfies the application condition ac, and to replace this matched part m(L) by
the corresponding right-hand side R of the rule. By G

p,m
=⇒ H, we denote the

direct graph transformation where rule p is applied to G with match m leading
to the result H. The formal construction of a direct transformation is a double-
pushout (DPO) as shown in the diagram below with pushouts (PO1) and (PO2)
in the category of graphs. The graph D is the intermediate graph after removing
m(L), and H is constructed as gluing of D and R along K.

L K R

G D H

ac l r

m (PO1) (PO2)

A graph transformation is a sequence of direct
transformations, denoted by G

∗=⇒ H, and the
graph language L(GG) of graph grammar GG is
the set L(GG) = {G | ∃ SG ∗=⇒ G} of all graphs
G derivable from SG.

An important concept of algebraic graph transformation is parallel and se-
quential independence of graph transformation steps leading to the Local
Church–Rosser and Parallelism Theorem [12], where parallel independent steps
G

p1,m1=⇒ G1 and G
p2,m2=⇒ G2 lead to a parallel transformation G

p1+p2,m
=⇒ H based

on a parallel rule p1 + p2. If p1 and p2 share a common subrule p0, the amal-
gamation theorem in [13] shows that a pair of “amalgamable” transformations

G
(pi,mi)=⇒ Gi (i = 1, 2) leads to an amalgamated transformation G

p̃,m̃
=⇒ H via

115

the amalgamated rule p̃ = p1 +p0 p2 constructed as gluing of p1 and p2 along
p0. The concept of amalgamable transformations is a weak version of parallel
independence, and amalgamation can be considered as a kind of “synchronized
parallelism”.

For the interpreter semantics of statecharts we need an extension of amalga-
mation in [13] w.r.t. three aspects: first, we need a family of rules p1, . . . , pn with
a common subrule p0 for n ≥ 2; second, we need typed attributed graphs [10]
instead of “plain graphs”, and third, we need rules with application conditions.

In the following, we formulate the extended amalgamation concept for a
general notion of graphs and application conditions, where general graphs are
objects in a weak adhesive HLR category [10] and general application conditions
are nested application conditions [14], including positive and negative ones and
their combinations by logic operators. For readers not familiar with weak adhe-
sive HLR categories and nested application conditions, it is sufficient to think of
rules based on graphs and (typed) attributed graphs with positive and/or nega-
tive application conditions (see [10] for more details). A match L m−→ G satisfies
a positive (negative) condition of the form ∃a (¬∃a) for L a−→ N if there is a
(no) injective q : N → G with q ◦ a = n. More general, L m−→ G satisfies a
nested condition of the form ∃(a, acN) on L with condition acN on N if there is
an injective N

q−→ G with q ◦ a = m and q satisfies acN . Note that ∀(a, acN) is
denoted as ¬∃(a,¬acN) (see application conditions in Figs. 6 - 7).

L L′

G

ac Shift(t , ac)t

m m′=

An important concept is the shift of ac on
L along a morphism t : L → L′ s.t. for all
m′ ◦ t : L → G, m′ satisfies Shift(t , ac) if and
only if m = m′ ◦ t : L→ G satisfies ac [15].

Based on [11], we are now able to introduce amalgamated rules and transfor-
mations with a common subrule p0 of p1, . . . , pn. A kernel morphism describes
how the subrule is embedded into the larger rules.

L0 K0 R0

Li Ki Ri

l0 r0

si,L
si,K si,R(1i) (2i)

Definition 1 (Kernel morphism). Given rules
pi = (Li

li←− Ki
ri−→ Ri, aci) for i = 0, . . . , n, a

kernel morphism si : p0 → pi consists of morphisms
si,L : L0 → Li, si,K : K0 → Ki, and si,R : R0 → Ri

such that in the diagram on the right (1i) and (2i) are pullbacks and (1i) has a
pushout complement for si,L ◦ l0, i.e. si,L satisfies the gluing condition w.r.t. l0.
The pullbacks (1i) and (2i) mean that K0 is the intersection of Ki with L0 and
also of Ki with R0.

p0 p̃

pi

t0

si ti=

Definition 2 (Amalgamated rule and transformation).

Given rules pi = (Li
li←− Ki

ri−→ Ri, aci) for i = 0, .., n with
kernel morphisms si : p0 → pi (i = 1, . . . , n), then the amal-
gamated rule p̃ = (L̃ ←− K̃ −→ R̃, ãc) of p1, . . . , pn via p0 is
constructed as the componentwise gluing of p1, . . . , pn along p0, where ãc is the
conjunction of Shift(ti,L, aci). L̃ is the gluing of L1, . . . , Ln with shared L0 lead-
ing to ti,L : Li → L̃. Similar gluing constructions lead to K̃ and R̃ and we obtain

116

kernel morphisms ti : pi → p̃ and ti ◦ si = t0 for i = 1, . . . , n. We call p0 kernel

rule, and p1, . . . , pn multi rules. An amalgamated transformation G
p̃

=⇒ H is a
transformation via the amalgamated rule p̃.

Example 1 (Amalgamated rule construction). We construct an amalgamated
rule for the initialization of a statemachine with two orthogonal regions. A
pointer has to be linked to the statemachine and to the initial states of both
the statemachine’s regions. Rules are depicted in a compact notation where we
do not show the interface K. It can be inferred by the intersection L ∩ R. The
mappings are given as numberings for nodes and can be inferred for edges. The
kernel rule p0 in Fig. 4 models the linking of the pointer to the statemachine.
We have two multi-rules p1 and p2 modelling the linking of the pointer to the
initial states of two different regions. In the amalgamated rule p̃, the common
subaction (linking the pointer to the statemachine) is represented only once
since the multi-rules p1 and p2 have been glued at the kernel rule p0. The kernel
morphisms are ti : pi → p̃ for i = 1, 2.

Given a bundle of direct transformations G
pi,mi=⇒ Gi (i = 1, .., n), where p0 is a

subrule of pi, we want to analyze whether the amalgamated rule p̃ is applicable
to G combining all direct transformations. This is possible if they are multi-
amalgamable, i.e. the matches agree on p0 and are parallel independent outside.
This concept of multi-amalgamability is a direct generalization of amalgamability
in [13] and leads to the following theorem [11].

Theorem 1 (Multi-amalgamation). Given rules p0, . . . , pn, where p0 is a
subrule of pi, and multi-amalgamable direct transformations G

pi,mi=⇒ Gi (i =

1, . . . , n), then there is an amalgamated transformation G
p̃,m̃
=⇒ H.

p0 : 1:SM 2:P

L0

1:SM 2:P

R0

p1 :

1:SM 2:P

3:R
4:S

isInitial=trueL1

1:SM 2:P

3:R
4:S

isInitial=trueR1

p2 :

1:SM 2:P

5:R
6:S

isInitial=trueL2

1:SM 2:P

5:R
6:S

isInitial=trueR2

p̃ :

1:SM 2:P

3:R
4:S

isInitial=true

5:R
6:S

isInitial=trueL̃

1:SM 2:P

3:R
4:S

isInitial=true

5:R
6:S

isInitial=trueR̃

s1,L s1,R

s2,L

s2,R

t1,L

t1,R

t2,L t2,R

new

new

new

new

Fig. 4. Construction of amalgamated rule

117

Proof Idea: Using the properties of the multi-amalgamable bundle, we can show
that m̃ with m̃ ◦ ti,L = mi induced by the colimit is a valid match leading to
the amalgamated transformation because the componentwise gluing is a colimit
construction. For the complete proof see [16].

For many application areas, including the interpreter semantics of state-
charts, we do not want to explicitly define the kernel morphisms between the
kernel rule and the multi rules, but we want to obtain them dependent on the ob-
ject to be transformed. In this case, only an interaction scheme is = {s1, . . . , sk}
with kernel morphisms si : p0 → pj (j = 1, . . . , k) is given, which defines dif-
ferent bundles of kernel morphisms s′i : p0 → p′i (i = 1, . . . , n) where each p′i
corresponds to some pj for j ≤ k.

Definition 3 (Interaction scheme). A kernel rule p0 and a set of multi rules
{p1, . . . , pk} with kernel morphisms si : p0 → pi form an interaction scheme
is = {s1, . . . , sk}.

Given an interaction scheme, we want to apply as many rules pj as often as
possible over a certain match of the kernel rule p0. In the following, we consider
maximal weakly disjoint matchings, where we require the matchings of the multi
rules not only to be multi-amalgamable, but also disjoint up to the match of the
kernel rule, and maximal in the sense that no more valid matches for any multi
rule in the interaction scheme can be found.

Definition 4 (Maximal weakly disjoint matching). Given an interaction
scheme is = {s1, . . . , sk} and a tuple of matchings m = (mi : L′i → G), where

each p′i corresponds to some pj for j ≤ k, with transformations G
p′

i,m
′
i=⇒ Gi, then

m forms a maximal weakly disjoint matching if the bundle G
p′

i,m
′
i=⇒ Gi is multi-

amalgamable, mi(Li) ∩m′i(L′i) = m0(L0) for all i 6= i′, and for any rule pj no
other match m′ : Lj → G can be found such that ((mi),m′) fulfills this property.

Note, that we may find different maximal weakly disjoint matchings for a
given interaction scheme, which may even lead to the same bundle of kernel
morphisms. For a fixed maximal weakly disjoint match we can apply Thm. 1

leading to an amalgamated transformation G
p̃′,m̃
=⇒ H, where p̃′ is the amalga-

mated rule of p′1, . . . , p
′
n via p0.

Given a set IS of interaction schemes is and a start graph SG , we obtain an
amalgamated graph grammar with amalgamated transformations via maximal
matchings, defined by maximal weakly disjoint matchings of the corresponding
multi rules.

Definition 5 (Amalgamated graph grammar). An amalgamated graph
grammar AGG = (IS ,SG) consists of a set IS of interaction schemes and a
start graph SG. The language L(AGG) of AGG is defined by L(AGG) = {G | ∃
amalgamated transformation SG =∗⇒ G via maximal matchings}.

118

4 An Interpreter Semantics for Statecharts

The semantics of statecharts is modeled by amalgamated transformations, where
one step in the semantics is modeled by several applications of interaction
schemes. For the application of an interaction scheme we use maximal weakly
disjoint matchings.

The termination of the interpreter semantics of a statechart in general de-
pends on the structural properties of the simulated statechart. A simulation will
terminate for the trivial cases that the event queue is empty, that no transition
triggers an action, or that there is no transition from any active state triggered
by the current head elements of the event queue. Since transitions may trigger
actions which are added as new events to the queue it is possible that the simu-
lation of a statechart may not terminate. Hence, it is useful to define structural
constraints that provide a sufficient condition guaranteeing termination of the
simulation in general for well-behaved statecharts, where we forbid cycles in the
dependencies of actions and events.

Definition 6 (Well-behaved statecharts). For a given statechart model, the
action–event graph has as nodes all event names and an edge (n1, n2) if an event
with name n1 triggers an action named n2.

A statechart is called well-behaved if it is finite, has an acyclic state hierar-
chy, and its action–event graph is acyclic.

For example, the action–event graph of a statechart is cyclic if an event a
triggers an action b, and the execution of the corresponding event b triggers
action a. In this case, with only one external trigger element (either a or b)
the statechart will run forever and does not terminate. An example of a well-
behaved statechart is our statechart model in Fig. 1. It is finite, has an acyclic
state hierarchy, and its action–event graph is acyclic, since the only action–event
dependencies in our statechart occur between produce triggering incbuff and
consume triggering decbuff.

For the initialization step, we provide a finite event queue and compute all
substates of all states, which is not shown here. Then, the interaction scheme
init is applied followed by the interaction scheme enterRegions applied as long as
possible, which are depicted in Fig. 5. With init, the pointer is associated to the
statemachine and all initial states of the statemachine’s regions. The interaction
scheme enterRegions handles the nesting and sets the current pointer also to
the initial states contained in an active state. When applied as long as possible,
all substates are handled. Note that only those initial substates become active
that are contained in a hierarchy of nested initial states. The interaction scheme
enterRegions also contains the identical kernel morphism idp40 : p40 → p40 to
ensure that the kernel rule is also applied in the lowest hierarchy level. For later
use, also double edges are deleted and if the direct superstate is not marked by
the pointer a new edge is added to it.

The initialization step (applying init once and enterRegions as long as pos-
sible) terminates because the application of the interaction scheme enterRegions

119

terminates: each application of enterRegions replaces one new edge with a current

edge. The multi rules p41 and p42 create new new-edges on the next lower and
upper levels of a hierarchical state, but if the state hierarchy is acyclic this in-
teraction scheme is only applicable a finite number of times. The same holds for
the multi rule p43 which deletes double edges, since the number of current- and
new-edges is decreased. Thus, the transformation terminates.

Fact 1 (Termination of initialization step). For well-behaved statecharts,
the initialization step terminates.

A semantical step, i.e. switching from one state to another, is done by apply-
ing the interaction scheme transitionStep shown in Fig. 6 followed by the inter-
action schemes enterRegions!, leaveState1!, leaveState2!, and leaveRegions!

given in Fig. 5, Fig. 7, and Fig. 8 in this order, where ! means that the corre-
sponding interaction scheme is applied as long as possible.

init = (s3)

1:SM 2:PL30
1:SM 2:PR30

1:SM 2:P

3:R
4:S

isInitial=trueL31

1:SM 2:P

3:R
4:S

isInitial=trueR31

ac30 = ¬∃a30 L30 R30

ac31 = true

enterRegions = (idp40 , s4, s
′
4, s

′′
4)

1:S 2:PL40
1:S 2:PR40

1:S 2:P

3:R
4:S

isInitial=trueL41

1:S 2:P

3:R
4:S

isInitial=trueR41

ac40 = true

ac41 = ¬∃a41 ∧ ¬∃b41

L41

1:S 2:P

3:R S
L41

1:S 2:P

3:R S

L40 R40

1:S 2:P

5:R 6:S

L42
1:S 2:P

5:R 6:S

R42

ac42 = ¬∃a42 ∧ ¬∃b42

L42

1:S 2:P

5:R 6:S
L42

1:S 2:P

5:R 6:S

L40 R40

1:S 2:PL43
1:S 2:PR43

ac43 = true

a42 b42

new new
new

new

a41 b41

new new

new

new
new

a30

s3,L s3,R

s4,L s4,R

s′
4,L s′

4,R

s′′
4,L s′′

4,R

new

new

new

new

Fig. 5. The interaction schemes init and enterRegions

120

For a semantical step, the first trigger element (or one of the first if more
than one action of different orthogonal substates may occur next) is chosen and
deleted, while the corresponding state transitions are executed. exit trigger el-
ements are handled with priority ensured by the application condition ac50. A
transition triggered by its trigger element is active if the state it begins at is
active, its guard condition state is active, and it has no active substate where a
transition triggered by the same event is active. These restrictions are handled
be the application conditions ac51 and ac52. Moreover, if an action is provoked,
it has to be added as one of the first next trigger elements. The two multi rules

transitionStep = (s5, s
′
5)

L50

1:P 2:TE
name=x

TE

name=”exit”3:TE

1:P

3:TE
TE

TE

name=”exit”

2:TE
name=x

ac50 = ∀(a50, ∃b50) ∧ ¬∃c50 L50 1:P TE
2:TE

name=x
3:TE

1:P 2:TE
name=x

3:TE

L50

1:P 3:TE

R50

1:P 2:TE
name=x

3:TE

4:S

5:T

6:S

7:E
name=x

L51

1:P 3:TE

4:S

5:T

6:S

7:E
name=x

R51

ac51 = ¬∃g51 ∧ ¬∃a51 ∧ ∀(b51,∃c51) ∧ ∀(d51, ∃(e51,¬∃f51))

L51 L52 L51 A5 L51 B5 C5 L51 D5 E5 F5

1:P 2:TE

name=”exit”

3:TE

4:S
5:T

S
6:S

7:E

name=”exit”A5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S

7:E
name=x

G SB5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S

7:E
name=x

G SC5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S
T

E
name=x

7:E
name=x

S

D5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S
T

E
name=x

7:E
name=x

S

G
S

E5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S
T

E
name=x

7:E
name=x

S

G
S

F5

L50 R50

1:P 2:TE
name=x

8:A
name=y

3:TE

4:S

5:T

6:S

7:E
name=x

L52

TE
name=y

1:P 3:TE

4:S

5:T

6:S

7:E
name=x

8:A
name=y

R52

ac52 = ¬∃a52 ∧ ∀(b52,∃c52) ∧ ∀(d52,∃(e52,¬∃f52))

s5,L s5,R

a50 b50

c50

g51 b51 c51 d51 e51 f51a51

begin

end

new

begin

end

begin

end

begin

end

begin

end

begin

end
begin

begin

end
begin

begin

end
begin

s′
5,L s′

5,R

begin

end

new
begin

end

Fig. 6. The interaction scheme transitionStep

121

leaveState1 = (idp60)

ac60 = ∃(a60,¬∃b60) L60

1:S 2:P

R

1:S 2:P

R S

1:S 2:PL60
1:S 2:PR60

leaveState2 = (s7)

ac70 = ¬∃a70
L70 1:S 2:P

1:S 2:PL70
1:S 2:PR70

1:S 2:P3:S

L71

1:S 2:P3:S

R71

ac71 = true

a70

s7,L s7,R

a60 b60

Fig. 7. The interaction schemes leaveState1 and leaveState2

leaveRegions = (s8, s
′
8)

ac80 = ∀(a80, ∃b80) ∧ ¬∃c80 ∧ ¬∃d80

L80 1:S 2:P TE 3:TE

L80

1:S 2:P 3:TE

R
4:S

isFinal=true

1:S 2:P 3:TE

R
4:S

isFinal=true

L80

1:S 2:P 3:TE

4:S

isFinal=false

1:S 2:P 3:TE

L80

1:S 2:P 3:TE

R80

1:S 2:P 3:TE

4:SL81

1:S 2:P 3:TE

4:SR81

ac81 = true

L80 R80

1:S 2:P

3:TE4:T
5:E

name=”exit”
L82

1:S 2:P

3:TE
4:T 5:E

name=”exit”

TE

name=”exit”

R82

ac82 = ¬∃a82 L82 1:S2:P
3:TE

name=”exit”
4:T

5:E

name=”exit”

begina82

s8,L s8,R

d80

c80b80a80

begin begin

s′
8,L s′

8,R

Fig. 8. The interaction scheme leaveRegions

of transitionStep handle the state transition with and without action, respec-
tively. The application condition ac52 is not shown explicitly, but the morphisms
a52, . . . , f52 are similar to a51, . . . , f51 containing an additional node 8:A.

The interaction schemes leaveState1, leaveState2, and leaveRegions
handle the correct selection of the active states. When for a yet active state
with regions, by state transitions all states in one of its regions are no longer ac-
tive, also this superstate is no longer active, which is described by leaveState1.
The interaction scheme leaveState2 handles the case that, when a state become
inactive by a state transition, also all its substates become inactive. If for a state
with orthogonal regions the final state in each region is reached then these final

122

states become inactive, and if the superstate has an exit-transition it is added
as the next trigger element. This is handled by leaveRegions.

For the termination of a semantical step it is sufficient to show that the four
interaction schemes enterRegions, leaveState1, leaveState2, and leaveRegions

are only applicable a finite number of times. The interaction scheme enterRegions

terminates as shown in Fact 1. The interaction schemes leaveState1, leaveState2
as well as the multi rule p81 of leaveRegions reduce the number of active states
in the statechart by deleting at least one current edge. The application of the
second multi rule p82 of the interaction scheme leaveRegions prevents another
match for itself because it creates the situation forbidden by its application
condition ac82. It follows that the application of each of these four interaction
schemes as long as possible terminates.

Fact 2 (Termination of semantical steps). Given a well-behaved statechart,
each semantical step terminates.

Combining our termination results we can conclude the termination of the
statecharts semantics for well-behaved statecharts.

Theorem 2 (Termination of interpreter semantics). For well-behaved
statecharts with finite event queue, the interpreter semantics terminates.

Proof. According to Facts 1 and 2, each initialization step and each semantical
step terminates. Moreover, each semantical step consumes an event from the
event queue. If it triggers an action, the acyclic action–event graph ensures that
there are only chains of events triggering actions, but no cycles, such that after
the execution of this chain the number of elements in the event queue actually
decreases. Thus, after finitely many semantical steps the event queue is empty
and the operational semantics terminates. ut

5 Application to the Running Example

We now consider an initialization and a semantical step in our statechart example
from Fig. 1. In the top of Fig. 9, we show an incoming event queue as needed for
our system run to be processed. Note that the actions triggered by transitions
do not occur here because they are started internally, while the other events
have to be supplied from the environment. Below, the current states and their
corresponding state transitions are depicted.

For simulation, we apply the rules for the semantics starting with the graph
in abstract syntax in Fig. 3, extended by the event queue from Fig. 9 and all
sub-edges marking that a state is a substate of its superstate.

For the initialization step, we apply the interaction scheme init from Fig. 5
followed by enterRegions as long as possible. With init, we connect the state
machine and the pointer node, and in addition set the pointer to the prod state
using a new edge. Now the only available kernel match for enterRegions is the

123

match mapping node 1 to the prod state, and with maximal matchings we ob-
tain the bundle of kernel morphisms (idp40 , s4, s4, s4), where node 4 in L41 is
mapped to the states produced, empty, and wait, respectively. After applying the
corresponding amalgamated rule, the current pointer is now connected to the
state machine and state prod, and via new edges to the states produced, empty,
and wait. Further applications of enterRegions using these three states for ker-
nel matches, respectively, lead to the bundle (idp40), thus changing the new to
current edges by its application. As result, the states prod, produced, empty, and
wait are current, which is the initial situation for the statemachine as shown in
Fig. 9. We do not find additional matches for enterRegions as we have only one
level of nesting in our diagram, which means that the initialization is completed.

For a state transition, the interaction scheme transitionStep in Fig. 6 is
applied, followed by the interaction schemes enterRegions!, leaveState1!, leave-
State2!, and leaveRegions! given in Fig. 5, Fig. 7, and Fig. 8.

For the initial situation, the kernel rule p50 in Fig. 6 has to be matched such
that node 2 is mapped to the first trigger element next and node 3 to produce,
otherwise the application condition of the rule would be violated. For the multi
rules, there are two events of name next, but since the state consumed is not
current, only one match for L51 is found mapping node 4 to the current state
produced and 6 to the state prepare. All application conditions are fulfilled, since
this transition does not have a guard or action, and the state produced does not
have any substates. Thus, the application of the bundle (s5) deletes the first
trigger element next, which is done by the kernel rule, and redirects the current
pointer from produced to prepare via a new edge. An application of the interaction
scheme enterRegions using the bundle (idp40) changes this new to a current edge.
Since we do not find further matches for L40, L60, L71, L81, and L82, the other
interaction schemes cannot be applied. This means that the states prod, prepare,
empty, and wait are now the current states, which is the situation after the state
transition triggered by next as shown in Fig. 9. The procession of the remaining
trigger elements works analogously.

current:

prod
produced

empty
wait

current:

prod
prepare
empty
wait

current:

prod
produced

empty
wait

current:

prod
produced

full
wait

current:

prod
produced

full
consumed

current:

prod
produced

empty
consumed

current:

prod
prepare
empty
wait

current:

prod
produced

empty
wait

current:

prod
produced

full
wait

current:

prod
produced

full
consumed

current:

prod
produced

empty
consumed

current:
error
call

current:
error
repair

current:
error
repair

current:
error

current:

prod
produced

empty
wait

TE

name=”next”

TE

name=”produce”

TE

name=”consume”

TE

name=”next”

TE

name=”produce”

TE

name=”consume”

TE

name=”null”

TE

name=”finish”

TE

name=”repair”

TE

name=”arrive”

TE

name=”fail”

next
pro-
duce

→inc-
buff

inc-
buff

con-
sume

→dec-
buff

dec-
buff next

pro-
duce

→inc-
buff

incbuff

con-
sume

→dec-
buff

dec-
bufffail

ar-
rive

re-
pair

fi-
nish

→exit

exit

Fig. 9. Event queue and state transitions

124

According to Thm. 2, the simulation of our example terminates because our
statechart is well-behaved and the event queue is finite.

6 Conclusion and Future Work

In this paper, we have defined a formal interpreter semantics for statecharts
leading to a visual interpreter semantics. It is based on the theory of algebraic
graph transformation and hence a solid basis for applying graph transformation-
based analysis techniques. Unfortunately, the classical theory of graph transfor-
mations [12] is not adequate to model the interpreter semantics of statecharts
because we need rule schemes to handle an arbitrary number of transitions in
orthogonal states in parallel. In this paper, we have solved this problem using
amalgamated graph transformation [11] in order to handle the interpreter se-
mantics. As a first step towards the analysis of this semantics we have shown
the termination of initialization and semantical steps and, more general, the
termination of the interpreter semantics for well-behaved statecharts.

Our formal approach is also a promising basis to analyze other properties
like confluence and functional behavior in the future. Since termination and
local confluence implies confluence, it is sufficient to analyze local confluence.
This has been done successfully for algebraic graph transformation based on
standard rules and critical pairs [10]. It remains to extend this analysis from
standard rules to amalgamated rules constructed by interaction schemes and to
take into account maximal matchings as well as all essential amalgamated rules
constructed from one interaction scheme.

Another interesting research area to be considered in future is the nesting of
kernel morphisms, which may lead to a hierarchical interaction scheme such that
a semantical step of the statechart is actually a direct amalgamated transforma-
tion over one interaction scheme, and we no longer need rules for redirecting the
current pointer afterwards.

References

[1] Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8 (1987) 231–274

[2] OMG: Unified Modeling Language (OMG UML), Superstructure, Version 2.2.
(2009)

[3] Beeck, M.: A Structured Operational Semantics for UML-statecharts. Software
and Systems Modeling 1 (2002) 130–141

[4] Reggio, G., Astesiano, E., Choppy, C., Hussmann, H.: Analysing UML Active
Classes and Associated State Machines - A Lightweight Formal Approach. In
Maibaum, T., ed.: Fundamental Approaches to Software Engineering. Proceedings
of FASE 2000. Volume 1783 of LNCS., Springer (2000) 127–146

[5] Maggiolo-Schettini, A., Peron, A.: A Graph Rewriting Framework for State-
charts Semantics. In Cuny, J., Ehrig, H., Engels, G., Rozenberg, G., eds.: Graph
Grammars and Their Application to Computer Science. Volume 1073 of LNCS.,
Springer (1996) 107–121

125

[6] Kuske, S.: A Formal Semantics of UML State Machines Based on Structured
Graph Transformation. In Gogolla, M., Kobryn, C., eds.: Proceedings of UML
2001. Volume 2185 of LNCS., Springer (2001) 241–256

[7] Kuske, S., Gogolla, M., Kollmann, R., Kreowski, H.J.: An Integrated Semantics
for UML Class, Object and State Diagrams Based on Graph Transformation. In
Butler, M., Petre, L., Sere, K., eds.: Proceedings of IFM 2002. Volume 2335 of
LNCS., Springer (2002) 11–28

[8] Gogolla, M., Parisi-Presicce, F.: State Diagrams in UML: A Formal Semantics
Using Graph Transformations. In: Proceedings of ICSE 1998, IEEE (1998) 55–72

[9] Varró, D.: A Formal Semantics of UML Statecharts by Model Transition Systems.
In Corradini, A., Ehrig, H., Kreowski, H., Rozenberg, G., eds.: Proceedings of
ICGT 2002. Volume 2505 of LNCS., Springer (2002) 378–392

[10] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs. Springer (2006)

[11] Golas, U., Ehrig, H., Habel, A.: Multi-Amalgamation in Adhesive Categories. In:
Proceedings of ICGT 2010. Volume 6372 of LNCS., Springer (2010) 346–361

[12] Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific (1997)

[13] Böhm, P., Fonio, H.R., Habel, A.: Amalgamation of Graph Transformations: A
Synchronization Mechanism. JCSC 34(2-3) (1987) 377–408

[14] Habel, A., Pennemann, K.H.: Correctness of High-Level Transformation Systems
Relative to Nested Conditions. MSCS 19(2) (2009) 245–296

[15] Ehrig, H., Habel, A., Lambers, L.: Parallelism and Concurrency Theorems for
Rules with Nested Application Conditions. ECEASST 26 (2010) 1–23

[16] Golas, U.: Multi-Amalgamation in M-Adhesive Categories: Long Version. Tech-
nical Report 2010/05, Technische Universität Berlin (2010)

126

The Pull-Tab Transformation

Abdulla Alqaddoumi1 Sergio Antoy2 Sebastian Fischer3 Fabian Reck3

1 Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, U.S.A.

2 Computer Science Department
Portland State University

Portland, OR 97207, U.S.A.

3 Institut für Informatik
Christian-Albrechts-Universität Kiel

D-24098 Kiel, Germany

Abstract. We present a new approach to the execution of functional
logic programs. Our approach relies on definitional trees for the deter-
ministic portions of a computation and on a graph transformation, called
pull-tab, for the non-deterministic portions. This transformation moves,
one level at a time, non-deterministic choices towards the root of the
graph representing the state of a computation. With respect to need-
based strategies for functional logic computations, our approach exe-
cutes only localized graph replacements, a property that characterizes it
as “pay as you go” and makes it suitable for parallel execution.

1 Introduction & Motivation

Non-deterministic programs are simpler to design and easier to reason about
than their deterministic counterparts [4]. These advantages do not come for
free. The burden unloaded from the programmer is placed on the execution
mechanism. Loosely speaking, all the alternatives of a non-deterministic choice
must be explored to some degree to ensure that no result of a computation is
lost. Doing this efficiently is a long-standing problem.

There are three main approaches to the execution of non-deterministic steps
in functional logic programs. This paper proposes a fourth approach with some
interesting characteristics missing from the other approaches. We begin by propos-
ing a simple example to present the existing approaches, to understand their
limitations, and to compare their differences. Below, is a short program that we
use as a running example. The syntax is Curry [10].

flip 0 = 1
flip 1 = 0
coin = 0 ? 1

(1)

We want to evaluate the expression

127

(flip x, flip x) where x = coin (2)

We recall that ‘?’ is a library function, called choice, that returns either of its
arguments, i.e., it is defined by the rules:

x ? _ = x
_ ? y = y

(3)

and that the where clause introduces a shared expression. Every occurrence of
x in (2) has the same value throughout the entire computation according to the
call-time choice semantics [13]. By contrast in (flip coin, flip coin) each
occurrence of coin is evaluated independently of the other. Fig. 1 highlights the
difference between these two expressions when they are represented as graphs.

(,)

��
��

�
>>

>>
>

flip

>>
>>

> flip

��
��

�

coin

(,)

��
��

�
;;

;;
;

flip flip

coin coin

Fig. 1. Graph representations of (2) and (flip coin, flip coin).

We recall that a context is an expression with a distinguished symbol called
hole denoted ‘[]’. If C is a context, C[x] is the expression obtained by replacing
the hole in C with x. E.g., the expression in (2) can be written as t[coin], where
t is the context of coin. An expression rooted by a node labeled by the choice
symbol is referred to as a choice.

1.1 Previous approaches

Backtracking is the most traditional approach to non-deterministic computa-
tions in functional logic programming. Evaluating a choice in some context, say
C[u?v], consists in selecting either argument of the choice, e.g., u (the crite-
rion for selecting the argument is not relevant to our discussion), replacing the
choice with the selected argument, which gives C[u], and continuing the compu-
tation. In typical interpreters, if and when the computation of C[u] completes,
the result is consumed, e.g., printed, and the user is given the option to either
terminate the execution or compute C[v]. Referring to our running example,
t[0?1] results in the evaluation of t[0] followed by the evaluation of t[1]. Back-
tracking is well-understood and relatively simple to implement. It is employed in
successful languages such as Prolog [14] and in language implementations such
as PAKCS [11] and T OY [8]. The major objection to backtracking is its incom-
pleteness. If the computation of C[u] does not terminate, no result of C[v] is
ever obtained.

Copying (or cloning) fixes the inherent incompleteness of backtracking. Eval-
uating a choice in some context, say C[u?v], consists in evaluating simultaneously

128

(e.g., by interleaving steps) and independently C[u] and C[v]. In typical inter-
preters, if and when the computation of either completes, the result is consumed,
e.g., printed, and the user is given the option to either terminate the execution
or continue with the computation of the other. Referring to our running exam-
ple, t[0?1] results in the simultaneous and independent evaluations of t[0] and
t[1]. Copying is simpler than backtracking and it is used in some experimental
implementations of functional logic languages [5, 18]. A significant optimization
of copying consists in sharing (and thus computing only once) subexpressions of
the context that are not on the spine of the choice (the path from the root to
the choice). The major objection to copying is the significant investment of time
and memory made when a non-deterministic step is executed. In well-designed
programs, most alternatives of a choice fail to produce any result, hence portions
of the copied context may never be used. For a contrived example, notice that
in 1+(2+(. . .+(n ‘div‘ coin). . .)) an arbitrarily large context is copied when
the choice is evaluated, but this context is almost immediately discarded.

Bubbling is an approach proposed to avoid the drawbacks of backtracking and
copying [2, 15]. Bubbling is similar to copying, in that it copies a portion of the
context of a choice to concurrently compute all its alternatives, but this portion
of copied context is typically smaller than the entire context. We recall that in
a rooted graph g, a node d is a dominator of a node n, proper when d 6= n, iff
every path from the root of g to n contains d. An expression C[u?v] can always
be seen as C1[C2[u?v]] in which the root of C2[] is a dominator of the choice. A
trivial case arises when C1[] = [] and C2[] = C[]. Evaluating a choice in some
context, say C[u?v], distinguishes whether or not C is empty. If C is the empty
context, u and v are evaluated simultaneously and independently, as in copying,
but there is no context to copy. Otherwise, the evaluation consists in finding C1

and C2 such that C[u?v] = C1[C2[u?v]] and the root of C2 is a proper dominator
of the choice, and evaluating C1[C2[u]?C2[v]]. If C1 is the empty context, then
bubbling is exactly as copying. Otherwise a smaller context, i.e., C2 instead of C,
is copied. Bubbling intends to reduce copying in the hope that some alternative
of a choice will quickly fail. Referring to our running example, t[0?1] bubbles to
the expression represented in the left-hand side of Fig. 2. Observe that the node
labeled (,) is the immediate proper dominator of the choice.

?

ssssssss

KKKKKKKK

(,)

��
��

�
;;

;;
; (,)

��
��

�
;;

;;
;

flip

;;
;;

; flip

��
��

�
flip

;;
;;

; flip

��
��

�

0 1

(,)

ssssssss
CC

CC
C

?

		
		
	

55
55

5 flip

flip

QQQQQQQQQQQ flip

OOOOOOOOOO ?

{{
{{

{{
{

0 1

Fig. 2. Graph representation of the state of the computation of (2) after a bubbling
(left side) and a pull-tab (right side) step.

129

Bubbling is more recent than the other approaches, it is not yet as well-
understood, and it still is the subject of active investigation [7]. An objection
to bubbling is the cost of finding a choice’s immediate dominator and the risk
of paying this cost repeatedly if no alternative of the choice fails. This cost en-
tails traversing a possibly-large portion of the choice’s context. Traversing the
context is more efficient than copying it, since copying requires node construc-
tion in addition to the traversal, but it is still unappealing, since the cost of a
non-deterministic step is not predictable and it may grow with the size of an
expression.

2 Pulling the Tab

A program is a graph rewriting system [9, 16]. An expression is a rooted graph
over the signature of the program. A computation is the repeated transfor-
mation of an expression by either a rewrite or a pull-tab step defined below.
Rewrite steps are computed with standard techniques [1]. Informally, a pull-
tab step moves a choice toward the root of an expression one level at a time.
As in a rewrite, a (sub)expression of an expression is replaced. Textually, a
(sub)expression of the form f(t1, . . . , a1?a2, . . . , tk), where f is not a choice, is
replaced by f(t1, . . . , a1, . . . , tk)?f(t1, . . . , a2, . . . , tk). For example, ((0+2) ? (1+
2)) ∗ 3 is the pull-tab of (0 ? 1) + 2 ∗ 3. If and when a choice reaches the root of
an expression, its alternatives have no context and are evaluated independently
of each other. The metaphor behind the name is to look at a path from the root
of an expression down to a choice as a zipper in which the choice is a pull tab.
As a choice is pulled up, the path opens into two strands, like a zipper, below
the pull tab. Pulling a choice above a predecessor copies the smallest amount of
context, i.e., the predecessor node only.

Unfortunately, the pull-tab transformation as sketched above may be un-
sound. Fig. 3 shows a state of the computation of (2) after some rewrite and
pull-tab steps. The superscript of some symbols may be ignored for the time
being. Without a corrective action, four results would be produced. In partic-
ular, the right argument of the left choice, i.e., (1,0), is not intended by the
semantics of current functional logic languages such as Curry [10] and T OY [8].

Unsoundness occurs when some choice has two predecessors, as in our running
example. The choice will be pulled up along two paths creating four strands that
eventually must be combined together. Some combinations will contain mutually
exclusive alternatives, or in other words subexpressions impossible to obtain with
the call-time choice semantics. In our running example, one such combination
mixes a 1 originating from the left alternative of the initial choice with a 0 from
the right alternative of the same choice. Avoiding expressions with mutually
exclusive alternatives suffices to recover the soundness of the pull-tab strategy.

To avoid impossible combinations of subexpressions, we track the history of
the non-deterministic steps of each expression. This history has been used in
other aspects of functional logic computations [3, 6] under the name of “finger-
print.” A node in a graph is decorated with information such as labeling and

130

?

��
��

��
CC

CC
CC

?

��
�� ==

==
== (,)α2

44
44

4

(,)α1

SSSSSSSSSSSSSS (,)α2α1

tttttttt

QQQQQQQQQQQQ 0α2 ?

		
		
	

//
//

1α1 1α1 0α2

Fig. 3. States of the computation of (2) after both rewrite and pull-tab steps. Super-
scripts are fingerprints. α is the choice identifier of every node labeled by ?. A node
labeled by (,), the pair constructor, has fingerprint α1α2. The subgraph at this node
mixes the left and right arguments of a choice and consequently does not produce a
result.

successor functions. For defining the pull-tab strategy, we extend the decorations
of nodes. Let Ω be a denumerable set whose elements we call choice identifiers
and denote by Greek letters. A fingerprint is a finite subset of Ω × {1, 2} whose
pairs we denote by juxtaposition. A node of each graph of a computation is
decorated by a fingerprint and, if the node is labeled by the choice symbol, it is
also decorated by a choice identifier.

A rewrite step preserves these decorations and assigns an empty fingerprint
to any node introduced by the replacement and a fresh choice identifier if the
node is a choice. A pull-tab step involves two nodes, a choice c and one of its
predecessors p not labeled by a choice. Let α be the choice identifier of c and
f the fingerprint of p. Informally, the step “moves up” c creating a new node
c′ and “splits” the predecessor p creating two new nodes, say p1 and p2. In the
resulting expression, the choice identifier of c′ is again α and the fingerprints of
p1 and p2 are f ∪ {α1} and f ∪ {α2}, respectively.

If the fingerprint of a node n contains α1 and α2, for some choice identifier
α, the graph rooted by n is semantically impossible and should be eliminated.
Fig. 3 shows an example of such a node, where superscripts denote fingerprints.

3 Current Work

We are developing a virtual machine based on the pull-tab strategy. The machine,
about 1000 lines of commented Ruby [17] code, includes a rudimentary parser
for the command line interpreter and a sophisticated printer for development
purposes and the presentation of results. The machine executes multisteps [12]
that, depending on the functional logic program being executed, may contain
dozens or hundreds of elementary steps. Since both rewrite and pull-tab steps
are localized graph replacements, we expect to be able to execute the elementary
steps of a multistep in parallel with only a modest synchronization overhead.

131

References

1. S. Antoy. Evaluation strategies for functional logic programming. Journal of
Symbolic Computation, 40(1):875–903, 2005.

2. S. Antoy, D. Brown, and S. Chiang. Lazy context cloning for non-deterministic
graph rewriting. In Proc. of the 3rd International Workshop on Term Graph
Rewriting, Termgraph’06, pages 61–70, Vienna, Austria, April 2006.

3. S. Antoy and M. Hanus. Set functions for functional logic programming. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP 2009), pages 73–82, Lisbon, Portugal,
September 2009.

4. S. Antoy and M. Hanus. Functional logic programming. Comm. of the ACM,
53(4):74–85, April 2010.

5. S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine for functional logic
computations. In Proc. of the 16th International Workshop on Implementation and
Application of Functional Languages (IFL 2004), pages 108–125, Lubeck, Germany,
September 2005. Springer LNCS 3474.

6. Bernd Brassel and Frank Huch. On a tighter integration of functional and logic pro-
gramming. In APLAS’07: Proceedings of the 5th Asian conference on Programming
languages and systems, pages 122–138, Berlin, Heidelberg, 2007. Springer-Verlag.

7. D. Brown. Ph.D. dissertation, 2010. In progress.
8. R. Caballero and J. Sánchez, editors. TOY: A Multiparadigm Declarative Language

(version 2.3.1), 2007. Available at http://toy.sourceforge.net.
9. R. Echahed. Inductively sequential term-graph rewrite systems. In Graph Trans-

formations, 4th International Conference (ICGT 2008), pages 84–98, Leicester,
UK, 2008. Springer, LNCS 5214.

10. M. Hanus, editor. Curry: An Integrated Functional Logic Language (Vers. 0.8.2),
2006. Available at http://www.informatik.uni-kiel.de/~curry.

11. M. Hanus, editor. PAKCS 1.9.1: The Portland Aachen Kiel Curry System, 2008.
Available at http://www.informatik.uni-kiel.de/~pakcs.

12. G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems. In
J.-L. Lassez and G. Plotkin, editors, Computational logic: essays in honour of Alan
Robinson. MIT Press, Cambridge, MA, 1991.

13. H. Hussmann. Nondeterministic algebraic specifications and nonconfluent rewrit-
ing. Journal of Logic Programming, 12:237–255, 1992.

14. ISO. Information technology - Programming languages - Prolog - Part 1, 1995.
General Core. ISO/IEC 13211-1, 1995.

15. F. J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández. Rewriting
and call-time choice: The HO case. In Proc. of the 9th International Symposium
on Functional and Logic Programming (FLOPS 2008), pages 147–162. Springer
LNCS 4989, 2008.

16. D. Plump. Term graph rewriting. In H.-J. Kreowski H. Ehrig, G. Engels and
G. Rozenberg, editors, Handbook of Graph Grammars, volume 2, pages 3–61. World
Scientific, 1999.

17. D. Thomas and A. Hunt. Programming Ruby: The Pragmatic Programmer’s Guide.
Addison Wesley Longman, Inc., 2001.

18. A. Tolmach, S. Antoy, and M. Nita. Implementing functional logic languages using
multiple threads and stores. In Proc. of the 2004 International Conference on
Functional Programming (ICFP), pages 90–102, Snowbird, Utah, USA, September
2004. ACM.

132

Coinductive graph representation:

the problem of embedded lists

Celia Picard and Ralph Matthes

Institut de Recherche en Informatique de Toulouse (IRIT),
C.N.R.S. and University of Toulouse III, France

Abstract. When trying to obtain formally certi�ed model transforma-
tions, one may want to represent models as graphs and graphs as greatest
�xed points. To do so, one is rather naturally led to de�ne co-inductive
types that use lists (to represent a �nite but unbounded number of chil-
dren of internal nodes). These concepts are rather well supported in
the proof assistant Coq. However, their use in our intended applications
may cause problems since the co-recursive call in the type de�nition oc-
curs in the list parameter. When de�ning co-recursive functions on such
structures, one will face guardedness issues, and in fact, the Coq system
refuses those de�nitions by applying a syntactic criterion that is too rigid
here.
We o�er a solution using dependent types to overcome the guardedness
issues that arise in our graph transformations. We also give examples
of further properties and results, among which �niteness of represented
graphs. All of this has been fully formalized in Coq.

1 The problem: explanation on an example

It is recognized that the on-going engineering e�ort for modeling and meta-
modeling has to be backed by rigorous formal methods. In this context, we aim
at performing certi�ed model transformations. In a �rst time, certi�cation should
be done by interactive theorem proving. This presupposes the representation of
models and metamodels in the language of the theorem prover. We chose to
represent models and metamodels as graphs and to use the Coq system 1 as a
speci�cation and veri�cation tool. The Coq system o�ers a language with a rich
notion of inductive and co-inductive types, i. e., data types that arise as least
and greatest solutions of �xed-point equations, respectively.
This led us to represent node-labeled graphs with co-inductive types (in order
to represent the in�nite navigability in loops). The idea we had was that each
node would have a label (a natural number for example) and a �nite list of sons
(graphs themselves). This type can be created through the following constructor:

De�nition 1 (Graph, viewed coinductively).

mk_Graph : nat→ (list Graph)→ Graph

1 See http://coq.inria.fr/

133

mk_Graph n l constructs a graph from the natural number n and the list
of graphs l. Since this is the greatest �xed point, no assumption about �nite
generation through mk_Graph is made. The empty list hides the base case.

Note 1 (Lists). For lists we use the Caml notation: [] for the empty list and
[a1; a2; . . .] for an explicit enumeration.

Note 2. Here we deal with single-rooted connected graphs because they corre-
spond best to co-inductive types. We are currently working on a more general
de�nition, still within the expressive power of Coq.

Example 1 (A simple example that does not use co-recursion: just a leaf).

Leaf n := mk_Graph n []

Example 2 (Example of a �nite graph). The graph of Figure 1 can be represented
as a term of type Graph with the following co-recursive de�nition:

Finite_Graph := mk_Graph 0 [mk_Graph 1 [Finite_Graph]]

0

1

Fig. 1. Example of a �nite graph

Note 3. This graph is �nite but unfolds into an in�nite (regular) tree, and thus
allows in�nite navigation.

Example 3 (Example of an in�nite graph). To represent the graph of Figure 2 as
a term of type Graph, we �rst de�ne a family of in�nite graphs, parameterized
by the label of the �rst node:

Infinite_Graphn := mk_Graph n [Infinite_Graphn+1]

The graph of Figure 2 corresponds to Infinite_Graph0.

0 1 2 . . .

Fig. 2. Example of an in�nite graph

Note 4. This graph is in�nite and unfolds into an in�nite irregular tree.

134

Until here, there is no problem with Coq. But if we try to apply a transformation
on a graph, Coq complains. For example, it is forbidden to de�ne the following
co-recursive function that applies a function f to each label of a graph:

De�nition 2. applyF2G (f : nat→ nat)(mk_Graph n l) :=
mk_Graph (f n) (map (applyF2G f) l)

Note 5. Of course, map is the usual mapping function that maps a function over
all the elements of a list, i. e., map f [a1; a2; . . .] = [f a1; f a2; . . .].

The reason why applyF2G is not accepted by Coq is that the guardedness con-
dition on co-inductive types is rather restrictive in Coq, and in this case, too
restrictive. Indeed, in Coq the guardedness condition is based on productivity [6].
Technically speaking it says that a co-recursive call must always be the argument
of some constructor of inductive or co-inductive type. Here, the co-recursive call
is an argument of the map function, which is itself under the constructor. This
is too indirect to satisfy the guardedness condition. For more details about the
guardedness conditions in Coq see [3] and [11].
Basically, the idea of the guardedness condition is to ensure that potentially
in�nite objects are computable. This means that we can always obtain more
information on the structure of the object in a �nite amount of time. Consider the
example of streams that are always in�nite. The application of a �lter on streams
is actually a problem since we cannot ensure that the next �good� element will
be found in a �nite amount of time. But here the problem is quite di�erent in
nature: it is not about �nding the next constructor but about the indirection of
the co-recursive call through map. However, in the case of map, this indirection
is harmless (we would only have to inspect in parallel the elements of that list).
So, Coq's guardedness condition forbids us to write semantically well-formed
de�nitions: guardedness restrictions go beyond syntactic well-formedness and
normal typing constraints but are still of a syntactic nature and thus only ap-
proximate the semantic notion of productivity that guarantees well-de�nedness.

In this article, we o�er and study a solution to overcome the problem with the
guardedness condition for de�nitions involving graphs. In Section 2 we explain
the solution, and we will see how it solves our problem in Section 3. Finally, in
Section 4 we o�er an extension of ilist to represent multiplicities in metamodels.
All the work presented here has been formally proved in Coq (in the version
8.2). The whole development is available in [14].

2 The solution: ilist

We develop here a solution that allows us to bypass the guardedness condition.

2.1 The idea

The idea to solve the problem is to use a function that mimics the behaviour of
lists (this idea has also been mentioned by Chlipala in [5]) Lists can easily be

135

seen as functions. If T is the type parameter, then a list can be considered as
a function that associates to each element of a set of n elements (n being the
length of the list) an element of type T. An element of the de�nition domain
represents the position of the associated element in the list.

Example 4. The list [10 ; 2 ; 5] can be transformed into the function of Figure 3.

p1

p2

p3

10

2

5

nat

Fig. 3. Representation of the function corresponding to the list [10 ; 2 ; 5]

But to be able to represent such a function, we need to have a set of n elements.

2.2 Fin � a family of types for �nite index sets

It is trivial to get an inductive type with n elements, for n = 0, 1, 2, . . . but it
is not for an indeterminate n. Here we need n to be a parameter of the type.
To represent a set of n elements, we have chosen to use the representation that
has also been used by Altenkirch in [1] and by McBride and McKinna in [12].
We actually represent a family of sets parameterized by the number of elements
they contain (in our case, the length of the list). This family is called Fin. Fin
has type nat→ Set. It is de�ned through the two following constructors:

De�nition 3 (Fin, viewed inductively).
first (n : nat) : Fin (n+ 1)
succ (n : nat) : Fin n→ Fin (n+ 1)

Note 6. Fin is a Generalized Algebraic Data Type (GADT). Those data types
are also available in current implementations of the Haskell programming lan-
guage.

First of all, we want to prove that Fin n indeed is a set of n elements.

Note 7. We use card to represent the cardinality of the set in an informal way.

Lemma 1. ∀n, card {i | i : Fin n} = n

Proof (by induction)

[Case 0] No constructor allows to create an element of type Fin 0. Therefore
card { i | i : Fin 0 } = 0

[Case n+1] With the constructor succ, we can construct as many elements of
Fin (n+1) as there are in Fin n. The constructor first allows us to construct
one more element of Fin (n+ 1).
Therefore, card {i | i : Fin (n+ 1)} = card {i | i : Fin n}+ 1.
With the induction hypothesis, we have card {i | i : Fin (n+ 1)} = n+ 1. 2

136

Note 8. This informal proof cannot be formalized in Coq because there is no
such card operation. With the card operation the following result would have
been a triviality.

Lemma 2. ∀n m, n = m⇔ Fin n = Fin m

Proof

[Direction ⇒] The proof here is straightforward, it is only a matter of rewriting
and we directly have the property. In informal mathematics this would not
even be stated.

[Direction ⇐] This direction is much trickier than the �rst one. Indeed, the
�rst idea we had was to show that all the elements of Fin n are in Fin m too,
doing a type rewrite on the type of the element. However, Coq handles it
poorly and does not allow us to do something like that (at least, we did not
�nd a way to do it). In order to prove this property, we de�ned the type of seg-
ments of natural numbers (let's call itNatSeg):NatSeg n := {m |m < n }.
We proved on it that if there exists a bijection between NatSeg n and
NatSeg n′ then n = n′. The proof is not straightforward here, but at least
we could do it. 2 Then we could prove that there is a bijection between Fin n
and NatSeg n and that therefore, ∀n m, Fin n = Fin m⇒ n = m. 2

Note 9. One may wonder why we did not use directly NatSeg instead of Fin to
represent a set of n elements. The reason is that it is much more comfortable to
have an inductive type (with concrete �nite elements). The elements ofNatSeg n
contain a proof of m < n, and we consider Fin more elementary.

Note 10. Using the fact that there is a bijection between Fin n and NatSeg n
and that the latter is a representation of 0...n− 1, we get an alternative (neces-
sarily informal) proof of Lemma 1.

2.3 Ilist implementation

Now that we have the domain of our functions, we can de�ne the type of functions
itself (let's call it ilistn).

The function ilistn It has two parameters: the type of the elements of the
list and its length. It is de�ned as follows:

De�nition 4. ilistn (T : Set) (n : nat) := Fin n→ T

Now we have our function that �mimics� lists. To each element of a set of n
elements, it associates an element of type T. However, one problem remains.
Indeed, as we said, ilistn needs two parameters. But for a list, the length is not
one of its parameters, it is inherent to it.

2 We had the con�rmation by other members of the Coq user community that no
simple proof was known yet.

137

The list counterpart, ilist To solve this problem, we create a new type that
combines the length of the list and the corresponding ilistn. We call it ilist :

De�nition 5. ilist (T : Set) := {n : nat & ilistn T n}

The two projection functions on ilist are called lgti (for the natural numbers
part) and fcti for the ilistn part. If we call CE the constructor for elements
of kind ... & ... (the dependent pair), then an element l of type ilist T can be
�reconstructed� as CE (lgti l) (fcti l).
We can show that there is a bijection between ilist and lists. To do so, we de�ne
two functions (one for each direction, let's call them ilist2list and list2ilist).
We show that the compositions ilist2list ◦ list2ilist and list2ilist ◦ ilist2list are
extensionally equal, i. e., pointwise Leibniz equal, to the identity. So we �nally
have what we were looking for: a type equivalent to lists but not inductive.

An equivalence on ilist It is very useful to be able to compare two elements
of the same type. Here, of course, we would like to be able to compare two
elements of ilist. For Fin there was no problem, it is inductive and does not
have any type parameter so Leibniz equality is �ne.
But here, the problem is di�erent. We intuitively see that in order to compare
elements of ilist, we will have to compare two di�erent things: the two parts of
its de�nition. The �rst one, its length, is the easy one: it is a natural number,
no problem here. But the second one is trickier. Indeed, we have to make sure
that the elements of the two elements of ilist we are comparing are equivalent
element-wise. And we have no insurance that they are comparable with Leibniz
equality (actually, in our concrete problem here, they are not, they are only
comparable through bisimulation). We thus de�ne an inductive proposition (let's
call it ilist_rel because it is the lifting of ilist to relations) that relates two
elements of ilist. Apart from the elements of ilist we are comparing (let's call
them l1 and l2) and the type parameter (let's call it T), the proposition needs
a given base relation R on type T , of type relation T , which is a shorthand for
T → T → Prop. Then, ilist_rel R has type relation (ilist T).
Intuitively, we would like to de�ne ilist_rel such that:

∀l1 l2 : ilist T, ilist_rel R l1 l2 ⇔
lgti l1 = lgti l2 ∧ (∀i : Fin (lgti l1), R (fcti l1 i) (fcti l2 i))

Unfortunately, this does not work. Indeed, fcti l2 has type Fin (lgti l2)→ T and
i has type Fin (lgti l1). We know that lgti l1 = lgti l2 but the types Fin (lgti l1)
and Fin (lgti l2) are still syntactically di�erent. Therefore, we must convert i
to type Fin (lgti l2) (the hypothesis lgti l1 = lgti l2 ensures that we have the
right to do it). In Coq, there is a special pattern matching feature that allows
us to make this type rewrite. We do not detail it here, for more information see
[16, Chapter 1.2.13 and 4.5.4].
In a context where h : lgti l1 = lgti l2 and i : Fin (lgti l1), we call i′h the result
of converting i to type Fin (lgti l2).

138

With this we can properly write our de�nition for ilist_rel :

De�nition 6 (ilist_rel).

∀l1 l2 : ilist T, ilist_rel R l1 l2 ⇔
∃h : lgti l1 = lgti l2, ∀i : Fin (lgti l1), R (fcti l1 i) (fcti l2 i′h)

Using advanced dependently typed pattern matching techniques, one can show
that ilist_rel R is an equivalence relation if R is one.

Functions on ilist As we have a bijection between lists and ilist, we can
rede�ne any function f that has lists as parameters and/or lists as result type. In
particular that means that all the usual functions (and higher order functions) on
lists have their counterpart on ilist. For example, the well-known filter function
on lists gives this analogue on ilist (for P a predicate on the type of elements):

De�nition 7. ifilter P l := list2ilist (filter P (ilist2list l))

And in general, any function f that would have the type list T → list T could
be translated to ilist as a function f ′. The function f ′ is de�ned as follows :

f ′ := list2ilist ◦ f ◦ ilist2list
However, this is only anecdotal as we embed f into another function and there-
fore we do not solve the guardedness issue. For example, if we de�ned an analogue
of the map function (let's call it imap) with this method, we would have:

De�nition 8 (imap, �rst try). imap f l := list2ilist (map f (ilist2list l))

But this does not solve our problem since the function f (which in our example
is the co-recursive call) would still be embedded into the map function, which
as we saw does not work.

imap We have to rede�ne the map function directly. This is actually quite
easy since the part of the ilist that is a�ected by the map is the functional
part (ilistn). So in fact, the imap function is little more than a composition of
functions. What we have to do is to compose the functional part of the ilist with
the function we have to apply and then recreate the ilist. The result has the
same natural numbers part (lgti l) and a new functional one : fun i⇒ f (fcti l i):

De�nition 9 (imap, suitable for guarded de�nitions).

imap (f : A→ B) (l : ilist A) := CE (lgti l) (fun i : Fin (lgti l)⇒ f (fcti l i))

Here, the function f (and therefore in our example the co-recursive call) is di-
rectly under the constructor CE . This satis�es the guardedness restriction and
solves our problem. So we see that the use of function spaces is considered less
critical than the use of inductive types because they are more primitive. They
are even part of the logical framework. This could not have been done on lists

139

since they are de�ned inductively and so should be the functions that manip-
ulate them. There is no other way than recursion to de�ne map on lists. All
such higher-order functions add a layer between the constructor and the func-
tion given as a parameter. In the case this function is a co-recursive call, it can
create, as we saw, a con�ict with the guardedness conditions. As the imap func-
tion is not de�ned recursively, there is no layer added and as we said, in case of
a co-recursive call the guardedness condition is satis�ed.

Universal quanti�cation For further de�nitions (see Section 3) we need to
de�ne a property on ilist that expresses that all the elements of an ilist satisfy
a predicate P . We call it iall (it is the counterpart for the for_all function in
Caml). It is de�ned as follows:

De�nition 10 (iall).

iall (T : Set) (P : T → Prop) (l : ilist T) : Prop := ∀i, P (fcti l i)

The ilist with only one element Only for comfort, we de�ne the ilist that
contains only one element and call it singleton. It consists of an ilist that has
length 1 (lgti singleton = 1) and a constant function that associates any element
of Fin 1 (but we know that there is only one element in Fin 1) to the element
contained in the ilist. It is de�ned as follows and will be useful to deal with our
examples (see Section 3.5):

De�nition 11 (singleton).

singleton (T : Set) (t : T) : ilist T := CE 1 (fun (_ : Fin 1)⇒ t)

3 Back to the original problem

Now, we can rede�ne the type Graph using ilist and de�ne various functions
and properties on it.

3.1 De�nitions of Graph and applyF2G

The de�nition of Graph is identical to the previous one, except that lists are
replaced by ilist. We de�ne it through the following constructor:

De�nition 12 (Graph, viewed co-inductively).

mk_Graph : nat→ (ilist Graph)→ Graph

Now we can de�ne the function applyF2G and Coq does not complain anymore:

De�nition 13. applyF2G (f : nat→ nat) (mk_Graph n l) :=
mk_Graph (f n) (imap (applyF2G f) l)

140

3.2 An equivalence on Graph

We can also de�ne all the other tools we need. In particular, we can de�ne an
equivalence relation on Graph. Indeed, as elements of Graph are coinductive,
Leibniz equality cannot be used here (it is just too �ne-grained), we need bisim-
ulation. To relate two elements of Graph, we need (as we did for ilist) to relate
their two parts. The label part is simple because, for natural numbers, we can
use Leibniz equality (but in the general case where labels would be of a type
T , we would need an equivalence relation on T , that could be in certain cases
Leibniz equality). For the sons part, that is represented by an ilist, we will use
the equivalence relation de�ned on ilist: ilist_rel (see Section 2.3). As the type
parameter for the ilist is itself Graph, ilist_rel needs the equivalence relation
on Graph as argument. So this relation must be de�ned coinductively. We call
label and sons the two functions on Graph that return respectively the natural
number and the ilist part of a Graph. They are such that the following lemma
is correct:

Lemma 3. ∀g : Graph, g = mk_Graph (label g) (sons g)

Note 11. Here we have the right to use Leibniz equality to compare two elements
of Graph as they are de�nitionally equal for any g of the form mk_Graph n l
(and not only bisimulated).

Finally, we can de�ne the equivalence relation on Graph (let's call it Geq) as
follows (de�ned co-inductively):

De�nition 14 (Geq). ∀g1 g2 : Graph, Geq g1 g2 ⇔
label g1 = label g2 ∧ ilist_rel Geq (sons g1) (sons g2)

Note 12. If we had used lists instead of ilist we would have had another prob-
lem here. Indeed, usually lists are compared with Leibniz equality but here we
cannot do that since the elements of the lists would only be comparable through
bisimulation. Therefore, we would have had to de�ne a new relation on lists that
takes this into account. An example of a Coq implementation of such a relation
can be seen in [14] (in the �le Listeq.v).

It is possible to show that Geq is an equivalence relation using the same style of
reasoning as for ilist_rel .

Note 13. To be equivalent, two elements of Graph would have to be constructed
in the same way. But the two graphs of Figure 1 (see the expression of Example
5 below in Section 3.5) and Figure 4 would not be equivalent even though we
might wish them to be. A coarser relation should be designed for this purpose.

3.3 Universal quanti�cation on Graph

As we did with ilist (see Section 2.3), we de�ne a property on Graph. It will
be useful, in particular in Section 3.4. This property expresses that a predicate
P : Graph → Prop on Graph is satis�ed by a Graph g and all its descendants
(sons, sons of its sons, and so on). As Graph is co-inductive, this property must
be de�ned co-inductively too. We call it G_all and it is de�ned as follows:

141

1

0

This graph is represented by the following ex-
pression using De�nition 12:
Finite_Graph ′ :=
mk_Graph 1 (singleton

(mk_Graph 0 (singleton Finite_Graph ′)))

Fig. 4. Other representation of the graph of Figure 1

De�nition 15 (G_all). ∀P, ∀g, G_all P g ⇔ P g ∧ iall (G_all P) (sons g)

3.4 Finiteness of Graph

Another interesting property on Graph is �niteness. It would be interesting for
example to prove that the examples 2 and 3 indeed are respectively �nite and
in�nite. Say that a Graph g is �nite means that it contains a �nite number of
elements of Graph. This can be expressed by the fact that all the elements of
Graph contained in g can �t into a �nite list. This is the way we choose to de�ne
the �niteness of a Graph. We call the �niteness property G_finite. To de�ne
it, we need a predicate (let's call it P_finite) to check whether a Graph g is
included in a list of graphs. By included we mean that there exists an element
of the list that is related through bisimulation (Geq) with g. We use ∈ to say
that an element is in a list.

De�nition 16. P_finite (lg : list Graph) (g : Graph) := ∃y, y ∈ lg ∧ Geq g y

Thanks to it we can de�ne G_finite.

De�nition 17 (G_�nite).

∀g, G_finite g ⇔ ∃lg : list Graph, G_all (P_finite lg) g

3.5 Proofs of �niteness and in�niteness

We want here to prove that the two examples 2 and 3 are respectively �nite and
in�nite. First, we must rede�ne them with our new de�nition of Graph.

Example 5 (Rede�nition of Finite_Graph). Finite_Graph :=
mk_Graph 0 (singleton (mk_Graph 1 (singleton Finite_Graph)))

Example 6 (Rede�nition of Infinite_Graphn).

Infinite_Graphn := mk_Graph n (singleton Infinite_Graphn+1)

Now we want to prove that Example 5 is �nite, i. e., that Lemma 4 is true:

142

Lemma 4 (Finite_Graph is �nite). G_finite Finite_Graph
Proof (by co-induction)
The proof here is quite easy. We must give a list containing all the elements of
Graph contained in Finite_Graph and show that it actually contains them all.
There are only two elements ofGraph contained in Finite_Graph: Finite_Graph
itself and mk_Graph 1 (singleton Finite_Graph). Therefore, the provided list
is: [Finite_Graph ; mk_Graph 1 (singleton Finite_Graph)]. Now, we only have
to prove that Finite_Graph is contained in the list (but it was designed for it !);
that its sons are (it only has one son: mk_Graph 1 (singleton Finite_Graph),
so it is in the list) and that the sons of its son are in the list too (this is
Finite_Graph itself, so we use the co-inductive hypothesis). 2

Similarly, we want to prove that Infinite_Graphn is not �nite.

Lemma 5 (Infinite_Graph
n
is in�nite). ∀n, ¬ G_finite Infinite_Graphn

To prove this, we use an auxiliary lemma that says that if the labels of a Graph
are unbounded, then the Graph is in�nite.

Lemma 6. ∀g, (G_finite g)⇒ (∃m, G_all (fun x⇒ label x ≤ m) g)

We do not detail the proof here but it is a straightforward co-induction.

Now, to prove Lemma 5, we only have to prove that the labels of Infinite_Graphn

are unbounded and we will have the result simply using Lemma 6. To prove that
the labels of Infinite_Graphn are unbounded, we show that ∀m,m ≥ n ⇒
Infinite_Graphm ⊆ Infinite_Graphn

Note 14. We informally use the notation ⊆ to say that a Graph is included in
another.

With this, it is easy to show that the labels are unbounded (since the �rst label
of Infinite_Graphn is n).

Note 15. In a similar way, we can show that if the number of sons in a Graph is
unbounded, then the Graph is in�nite. However, it is also possible to construct
elements of Graph in which the out-degree of a node is bounded and so are the
labels and that are still in�nite (see Figure 5 for an example). Here, the proof
of in�niteness is much more di�cult (it is part of [14]).

0 1 0 0 1 0 0 0 1 . . .

Fig. 5. Example of an in�nite graph with bounded number of sons and bounded labels

3.6 Graph in Graph

We will need to represent the property asserting that an element gin of Graph
is (strictly) included into another element gout of Graph (see Section 3.7). We

143

split the situation into two di�erent cases: gin is part of sons gout or gin is
included in one of gout's sons. In Coq, the following de�nition is represented as
an inductive property with two constructors.

De�nition 18 (GinG).

∀gin gout : Graph, GinG gin gout⇔
{
∃i, Geq gin (fcti (sons gout) i) or
∃i, GinG gin (fcti (sons gout) i)

We can prove that this relation is transitive.

3.7 Cycles in Graph

It may also be useful to de�ne a property about the existence of a cycle in an
element of Graph. To do so, we use the property GinG de�ned above.
First of all, we de�ne a property saying that an element g of Graph is itself a
cycle (i. e., there is a non-empty path from the root to the root). This means that
g is itself included in g. Therefore the de�nition of isCycle is straightforward.

De�nition 19 (isCycle). isCycle g ⇔ GinG g g

Using this de�nition, it is easy to de�ne the property of existence of a cycle in
an element g of Graph. Just as we did for GinG, we divide the property into
two cases. Either g is a cycle or one element of sons g has a cycle. As before, in
Coq this is de�ned through two constructors.

De�nition 20 (hasCycle).

∀g : Graph, hasCycle g ⇔
{

isCycle g or
∃i, hasCycle (fcti (sons g) i)

For a �nite element of Graph, it is quite easy to prove the existence or non-
existence of a cycle (for example, it is straightforward to prove that Example 5
has a cycle). However if there are many nodes, the proof might be long. Indeed,
the proofs are constructive, that is, one will have to exhibit the cycle to prove
that it exists or to look into each di�erent path to show that there is none. This
last operation may be tedious.

4 Multiplicity

In this section, we present an extension of ilist to represent multiplicities in
metamodels representation. As said in Section 1, our �nal goal is to be able to
represent big metamodels in Coq and then perform transformations on these
models. But the very �rst thing to do is to represent them. There are various
problems that arise then. For example, the representation of inheritance which
we have not solved yet. Another one is the representation of multiplicity. For
this, we have extended the concept of ilist to take into account multiplicity, i. e.,
an interval constraint on the out-degree.
First we need a property (let's call it PropMult) to say whether a number is
between the two speci�ed bounds of the multiplicity condition. The inferior
bound (let's call it inf) always exists (it can be 0 but always has a value).

144

Therefore it has type nat. On the opposite, the superior bound (let's call it sup)
may not exist (multiplicity �∗�). Therefore it has type option nat (constructor
Some if it exists, constructor none if not). The property is expressed as follows:

De�nition 21 (PropMult). ∀inf sup k,
[Case sup = Some s] k ≥ inf ∧ k ≤ s
[Case sup = None] k ≥ inf
Thanks to this property we can re�ne our ilistn (that was the set of functions
of type Fin n→ T) to keep only the ones whose n satis�es PropMult .

De�nition 22. ilistnMult T inf sup n := {ln : ilistn T n | PropMult inf sup n}
Note 16. Elements of ilistnMult are pairs formed by an element of ilistn and a
proof of PropMult inf sup n, hence the type is empty if PropMult inf sup n
does not hold.

Now that we have ilistnMult , the de�nition of ilistMult (the counterpart of ilist
with multiplicity) is straightforward. It is the same as the de�nition of ilist (see
Section 2.3) but using ilistnMult .

De�nition 23. ilistMult T inf sup := {n : nat & ilistnMult T inf sup n}
We can de�ne a relation and functions on ilistMult very much the same way as
we did on ilist. Therefore we do not present them again here.
We can also show that there is a bijection between ilistMult T 0 None and list (we
do it the same manner we did for ilist, de�ning ilistMult2list and list2ilistMult
and showing that their compositions are extensionally equal to the identity).

Note 17 (multiplicities). The multiplicities 0 and None are explained by the fact
that a list may have no element (empty list, so inf = 0) or a �nite but unbounded
number of elements (i. e., multiplicity �∗�, so sup = None).
Combining the lemmas about bijection between lists, ilist and ilistMult , we
obtain that there exists a bijection between ilist T and ilistMult T 0 None.
The important result is that then all de�nitions written with ilist T can be writ-
ten equivalently with ilistMult T 0 None. In particular the following de�nition
of GraphMult is equivalent to Graph:

De�nition 24 (GraphMult).

mk_GraphMult : nat→ (ilistMult Graph 0 None)→ Graph

5 Related Work

The work presented here shares concerns with other work. Amongst them, we
can cite the work by Bertot and Komendantskaya in [3]. In their paper they treat
the problem of representing streams as functions, to overcome Coq's guarded-
ness issues. The main di�erence is that we need a �nite de�nition set (Fin n)
whereas they can just use nat. Recall that our problem was with the embedded
inductive type of lists and not the co-inductive streams. In [7], Dams proposes an
alternative solution to our problem in Coq. He de�nes everything co-inductively
(so instead of lists, he has streams of sons) and then restricts what needs to be

145

�nite by a property of �niteness. In that approach, programming is done with a
bigger datatype and the proofs have to be carried out for the �good� elements. In
[13], Niqui describes a general solution for the representation of bisimulation in
Coq using category theory. However, as we tried to apply his theory, it seemed
that only co-inductive embedded types could be treated (streams but not lists)
with the given solution. Moreover, it did not seem possible to parameterize the
bisimulation by an equivalence relation over the types of the elements.
Coq is not the only proof assistant to have guardedness issues. For example, they
are present in Agda, another proof assistant based on predicative type theory. We
studied the way guardedness issues are addressed in Agda. Danielsson describes
it in [8] (see also extended case study with Altenkirch in [9]). The solution used is
to rede�ne the types (for example the types of lists) adding a constructor for each
problematic function (for example, map). However, this is based on a mixture of
inductive and co-inductive constructors for a single datatype de�nition, which
is not admissible in Coq and of experimental status even in Agda.
About graph representation in functional languages, we can mention the work
by Erwig. In [10] he proposes a way to represent directed graphs using inductive
types, where, in the inductive step, a new node is added, together with all its
edges to and from previously introduced nodes. Being "new" or "previously
introduced" is not part of the inductive speci�cation but only of a more re�ned
implementation. Moreover, there is no certi�cation of these invariants for graph
algorithms, although this might be interesting future work in expressive systems
such as Coq. However, the main conceptual di�erence to our work is that in his
representation, all nodes are represented at the same level (they are more or less
elements of a list) while we actually wanted, for our own needs, to build into the
construction navigability through the graph, including its loops.

6 Conclusion

In this paper, we have developed a complete solution to overcome Coq's guard-
edness condition when mixing the inductive type of lists with co-inductive types.
The Coq development corresponding to this work is available in [14]. This frame-
work can be extended with new features as needed. For the results we wanted to
obtain, it worked well. Clearly, it would have been easier if a more re�ned guard-
edness criterion had been available in Coq but the last ten years have shown that
getting the criterion right is a quite subtle issue.

However, we would now be interested in a more general solution to overcome the
guardedness condition with any embedded inductive type (not only lists). But
we realized that to do so, we needed to be more abstract. We are working on
that now. In particular, we are studying the possibility to draw more inspiration
from category theory. The work by Niqui in [13] might be a good start.

Moreover, the work we present has to be seen as part of a larger project where we
are interested in a co-inductive representation of metamodels (see Section 4). We
have solved the problem of multiplicity but the problem of inheritance/subtyping
remains. Of course, we look for an extensible way to represent metamodels (they

146

may vary over time). Certainly, Poernomo's work on type theory for metamodels
in [15] is relevant here. The work by Boulmé on FOCAL [4] that has been realized
with Coq, will probably help in treating the inheritance problem.

Acknowledgement: This development was initiated by the original idea of
Jean-Paul Bodeveix to use ilist to overcome the guardedness condition. We are
grateful for several interesting suggestions by Silvano Dal Zilio and for the careful
reading of a preliminary version by Martin Strecker.

References

1. Altenkirch, T.: A formalization of the strong normalization proof for system F in
LEGO. In: Bezem, M., Groote, J.F. (eds.) Typed Lambda Calculi and Applications,
International Conference, TLCA 1993. Lecture Notes in Computer Science, vol.
664, pp. 13�28. Springer (1993)

2. Berardi, S., Damiani, F., de'Liguoro, U. (eds.): Types for Proofs and Programs,
International Conference, TYPES 2008, Torino, Italy, March 26-29, 2008, Revised
Selected Papers, Lecture Notes in Computer Science, vol. 5497. Springer (2009)

3. Bertot, Y., Komendantskaya, E.: Using structural recursion for corecursion. In:
Berardi et al. [2], pp. 220�236

4. Boulmé, S.: Specifying in Coq inheritance used in computer algebra. Research
report, LIP6 (2000), available on www.lip6.fr/reports/lip6.2000.013.html

5. Chlipala, A.: Is Coq being too conservative? Posting to Coq club,
http://logical.saclay.inria.fr/coq-puma/messages/d71fd3954d860d42#

msg-285229ea3f28adef
6. Coquand, T.: In�nite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)

Types for Proofs and Programs, International Conference, TYPES 1993. Lecture
Notes in Computer Science, vol. 806, pp. 62�78. Springer (1993)

7. Dams, C.: Is Coq being too conservative? Posting to Coq club,
http://logical.saclay.inria.fr/coq-puma/messages/d71fd3954d860d42#

msg-7946fd74eb4de604
8. Danielsson, N.A.: Beating the productivity checker using embedded languages. In:

Workshop on Partiality and Recursion in Interactive Theorem Provers, PAR (2010)
9. Danielsson, N.A., Altenkirch, T.: Subtyping, declaratively. In: Bolduc, C., Deshar-

nais, J., Ktari, B. (eds.) Mathematics of Program Construction (MPC'10). Lecture
Notes in Computer Science, vol. 6120, pp. 100�118. Springer (2010)

10. Erwig, M.: Inductive graphs and functional graph algorithms. J. Funct. Program.
11(5), 467�492 (2001)

11. Giménez, E., Castéran, P.: A tutorial on [co-]inductive types in Coq (2007), www.
labri.fr/perso/casteran/RecTutorial.pdf

12. McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(1), 69�111
(2004)

13. Niqui, M.: Coalgebraic reasoning in Coq: Bisimulation and the lambda-coiteration
scheme. In: Berardi et al. [2], pp. 272�288

14. Picard, C., Matthes, R.: Formalization in Coq for this article, www.irit.fr/

~Celia.Picard/Coq/Coind_Graph/
15. Poernomo, I.: Proofs-as-model-transformations. In: Vallecillo, A., Gray, J., Pieran-

tonio, A. (eds.) International Conference on Model Transformation, ICMT 2008.
Lecture Notes in Computer Science, vol. 5063, pp. 214�228. Springer (2008)

16. The Coq Development Team: The Coq proof assistant reference manual, http:
//coq.inria.fr

147

148

Formal Specification of Model
Transformations by Triple Graph Grammars

with Application Conditions

Ulrike Golas, Hartmut Ehrig, and Frank Hermann

Technische Universität Berlin, Germany
{ugolas|ehrig|frank}@cs.tu-berlin.de

Abstract. Triple graph grammars are a successful approach to describe
exogenous model transformations. Source and target models are related
by some connection part, triple rules describe the simultaneous construc-
tion of these parts, and forward and backward rules can be derived model-
ing the forward and backward model transformations. As shown already
for the specification of visual models by typed attributed graph transfor-
mation, the expressiveness of the approach can be enhanced significantly
by using application conditions, which are known to be equivalent to first
order logic on graphs.
We extend triple rules with a specific form of application conditions,
which enhance the expressiveness of formal specifications for model trans-
formations. In the main technical results, we show how to extend results
concerning information preservation, termination, correctness, and com-
pleteness of model transformations to the case with application condi-
tions. We illustrate our approach and results with a model transformation
from statecharts to Petri nets.

1 Introduction

Specification of models and model transformations play a central role in model-
driven software development. For the specification of visual models and lan-
guages, it is common practice to use UML modeling techniques for the concrete
syntax with underlying typed attributed graph transformation for the abstract
syntax. The visual language can be defined in a declarative way by a meta-model
with OCL-constraints or – on the abstract level – by a type graph and suitable
graph constraints. Alternatively, the visual language can be generated on the
abstract level by typed attributed graph grammars [1]. It is well-known that the
expressiveness of such generative approaches can be enhanced by using graph
grammar rules with negative application conditions (NACs), or even more by
using nested application conditions in the sense of [2], which are known to be
equivalent to first order logic on graphs and more expressive than NACs.

For the specification of model transformations, triple graph grammars (TGGs)
are a well-established formalism [3], where several extensions of the original TGG
definitions have been published in [4, 5, 6], and various kinds of applications have

149

been presented [7, 8, 9]. Formal properties concerning information preservation,
termination, correctness, and completeness of model transformations have been
studied already in [10, 11] based on triple rules without NACs, where the decom-
position and composition theorem for triple graph transformation sequences in
[12] plays a fundamental role. In [13], this theorem has been extended to triple
rules with NACs, but not yet to nested application conditions [2].

It is the main aim of this paper to extend the theory of model transformations
based on TGGs to rules with general nested application conditions, short applica-
tion conditions, in order to enhance the expressiveness of model transformations
including the generation of the source and target languages by corresponding
source and target rules. As a case study, we consider a model transformation
from statecharts to Petri nets, where we use a combination of positive and neg-
ative application conditions as available in the framework of general application
conditions, but not in the more restrictive framework of NACs.

As first main result, we show that the decomposition and composition theo-
rem can be extended to rules with application conditions. This allows to enhance
the expressiveness of model transformations and to extend in our second and
third main result termination, correctness, completeness, and backward infor-
mation preservation to this more general framework.

This paper is organized as follows. In Sec. 2, we review triple rules and appli-
cation conditions. Our case study is presented in Sec. 3 and used as illustrating
example in Sec. 4, where we define model transformations based on TGGs with
application conditions leading to the three main results. A conclusion including
related and future work is presented in Sec. 5.

2 Review of Triple Graph Transformation and
Application Conditions

Triple graph grammars [3] are a well known approach for bidirectional model
transformations. In [5], the basic concepts of triple graph grammars are formal-
ized in a set-theoretical way, which is generalized and extended in [12] to typed,
attributed graphs.

A triple graph G = (GS
sG← GC

tG→ GT) consists of graphs GS , GC , and GT ,
called source, connection, and target component, and two graph morphisms sG

and tG mapping the connection to the source and target components. A triple
graph morphism f : G1 → G2 matches the single components and preserves the
connection part.

The typing of a triple graph is done in the same way as for standard graphs
via a type graph TG - in this case a triple type graph - and a typing morphism
typeG from the graph G into this type graph leading to the typed triple graph
(G, typeG). A typed triple graph morphism f : (G1, typeG1)→ (G2, typeG2) is a
triple graph morphism f such that typeG2 ◦ f = typeG1 .

Triple graphs and typed triple graphs, together with the component-wise
compositions and identities, form the categories TripleGraphs and Triple-
GraphsTG. Moreover, these categories can be extended to weak adhesive HLR

150

categories [1] with the class M of injective morphisms which allows us to in-
stantiate the theory to transformations of triple graphs. We consider both triple
graphs and typed triple graphs, but do not explicitly mention the typing.

L R

G H

LS LC LT

GS GC GT

RS RC RT

HS HC HT

tr

f

m n

sL tL

sG tG

mS
mC mT

sR tR

sH tH

nS nC
nT

trS trC trT

fS fC fT

(1)

A triple rule
tr = (L tr→ R)
consists of triple
graphs L and
R, and an M-
morphism tr :
L → R. Since
triple rules are non-deleting, we do not need a span of morphisms for a rule.
A direct triple transformation G =

tr,m
==⇒ H of a triple graph G via a triple rule

tr and a match m : L → G is given by the pushout (1), which is constructed
as the component-wise pushouts in the S-, C-, and T -components, where the
morphisms sH and tH are induced by the pushout of the connection component.
Note, that due to the structure of the triple rules, double and single pushout
approach are equivalent in this case.

A triple graph transformation system TGS = (TR) is based on triple graphs
and a set of rules TR over them. A triple graph grammar TGG = (TR, S) con-
tains in addition a triple start graph S. For triple graph grammars, the generated
language is defined by V L = {G | ∃ triple transformation S

∗⇒ G via rules in
TR}. Moreover, the source language V LS = {GS | (GS

sG← GC
tG→ GT) ∈ V L}

contains all standard graphs that are the source component of a derived triple
graph. Similarly, the target language V LT = {GT | (GS

sG← GC
tG→ GT) ∈ V L}

contains all derivable target components.

trS =
LS ∅ ∅

RS ∅ ∅

∅ ∅

∅ ∅

trS ∅ ∅

trT =
∅ ∅ LT

∅ ∅ RT

∅ ∅

∅ ∅

∅ ∅ trT

trF =
RS LC LT

RS RC RT

trS◦sL tL

sR tR

idRS trC trT

trB =
LS LC RT

RS RC RT

sL trT ◦tL

sR tR

trS trC idRT

From a triple rule, we can derive a
source rule trS and a target rule trT ,
which specify the changes done by this
rule in the source and target components,
respectively. Moreover, the forward rule
trF and the backward rule trB describe
the changes done by the rule to the con-
nection and target resp. source parts, as-
suming that the source resp. target rules
have been applied already. Intuitively,
the source rule creates a source model,
which can then be transformed by the
forward rules into the corresponding tar-
get model. This means that the forward
rules define the actual model transforma-
tion from source to target models. Vice
versa, the target rules create the target
model, which can then be transformed into a source model applying the back-
ward rules. Thus, the backward rules define the backward model transformation
from target to source models.

151

An important extension is the use of rules with suitable application conditions
as done in the next sections. These include positive application conditions of the
form ∃a for a morphism a : L → C, demanding a certain structure in addition
to L, and also negative application conditions ¬∃a, forbidding such a structure.
A match m : L→ G satisfies ∃a (¬∃a) if there is a (no)M-morphism q : C → G
satisfying q◦a = m. In more detail, we use nested application conditions [2], short
application conditions, where true is an application conditions, which is always

L C

G

acC

a

m q

satisfied. For a basic application condition ∃(a, acC) on
L with an application condition acC on C, in addition to
the existence of q it is required that q satisfies acC .We
use ∃a as a short notion for ∃(a, true). In general, we
write m |= ∃(a, acC) if m satisfies ∃(a, acC), and appli-
cation conditions are closed under boolean operations. Moreover, acC ∼= ac′C
denotes the semantical equivalence of acC and ac′C on C.

3 Model Transformation from Statecharts to Petri Nets

In this section, we define a model transformation from a variant of UML state-
charts [14] to Petri nets using triple rules and application conditions. Statecharts
may have orthogonal regions as well as state nesting. As a small restriction, we
do not handle entry and exit actions, do not allow extended state variables,
allow guards only to be conditions over active states, and allow only a depth
of two for hierarchies of states. For the target language of Petri nets, we use
nets with inhibitor arcs, contextual arcs, and open places. A transition with an
inhibitor arc from a place (denoted by a filled dot instead of an arrow head) is
only enabled if there is no token on this place. A contextual arc between a place
and a transition (denoted by an edge without arrow heads), also known as read
arc in the literature, means that this token is required for firing, but remains
on the place. Open places allow the interaction with the environment, i.e. token
may appear or disappear without firing a transition within the net. We assume
all places to be open. With these restrictions for statecharts and extensions for
Petri nets we are able to define a model transformation from statecharts to Petri
nets which preserves the semantical behavior, at least on an informal level.

error

call

repair

prod

produced

prepare

empty

full

wait

consumed

arrive

finish

repair

finish

exit
next

produce
[empty]
/incbuff

fail

incbuff decbuff next
consume
[full]

/decbuff

Fig. 1. The example statechart in concrete syntax

In Fig. 1, the
statechart Prod
Cons is depicted
modeling a pro-
ducer-consumer
system. When
initialized, the
system is in the
state prod,
which has three
regions. There, in parallel a producer, a buffer, and a consumer may act. The
producer alternates between the states produced and prepare, where the tran-

152

RE

name:String

T

S

name:String

isInitial:Bool

isFinal:Bool

A

name:String

G
E-P

S-P

S-T1

S-T2

T-T

R-T3

S-Pe

place

transition

pre inhibitor
post contextual

region state

trigger

action

guard

begin

end

condition
sTG tTG

Fig. 2. The triple type graph

sition produce models the actual production activity. It is guarded by a con-
dition that the parallel state empty is also current, meaning that the buffer is
empty and may actually receive a produce, which is then modeled by the ac-
tion incbuff denoted after the /-dash. Similarly to the producer, the buffer
alternates between the states empty and full, and the consumer between wait
and consumed. The transition consume is again guarded by the state full and
followed by a decbuff-action emptying the buffer.

Two possible events may happen causing a state transition leaving the state
prod: the consumer may decide to finish the complete run or there may be a fail-
ure detected after the production leading to the error-state. Then, the machine
has to be repaired before the error-state can be exited via the corresponding
exit-transition and the standard behavior in the prod-state is executed again.

For the modeling, we use typed attributed graphs, which are an extension of
typed graphs by attributes [1]. We do not give details here, but use an intuitive
approach to attribution, where the attributes of a node are given in a class
diagram-like style. For the values of attributes in the rules we can also use
variables. Note, that for the typing of the edges we omit the edge types if they
are clear from the node types they are connecting.

In Fig. 2, the triple type graph is depicted, containing in the left the source
component of statecharts in abstract syntax, in the right the target component of
Petri nets, and the connection component inbetween. To obtain valid statechart
models, some constraints are needed which are described in the following but
are not shown explicitly.

Each diagram consists of at least one state S containing one or many regions
R, which again contain states. States may be initial (attribute value isInitial =
true) or final (attribute value isFinal=true), each region has to contain exactly
one initial and at most one final state, and final states cannot contain regions.
A transition T begins and ends at a state, is triggered by an event E, and may
be restricted by a guard G and followed by an action A. A guard has one or more
states as conditions. There is a special event with attribute value name="exit"
reserved for exiting a state after the completion of all its orthogonal regions,
which cannot have a guard condition. Final states cannot be the beginning of a
transition.

In the following, we present the triple rules that create simultaneously the
statechart model, the connection part, and the corresponding Petri net. In gen-
eral, each state of the statechart model is connected to a place in the Petri net.

153

Transitions between states are mapped to Petri net transitions, and fire when
the corresponding state transition occurs. Also, events are connected to places,
where all events with the same name share the same Petri net place. They are
connected via a contextual arc to their corresponding transition thus enabling
the simultaneous firing of all enabled Petri net transitions when a token is placed
there. By using contextual arcs it is possible that all transitions connected to
an event with this name are enabled. Otherwise, we would not be able to fire
all these transitions concurrently. They would not be independent but compete
for the token. For independence, we had to know in advance how many of these
transitions will fire to allocate that number of tokens on the event’s place. For a
guard, the Petri net transition of its transition in the statechart diagram is the
target of a pre and post arc from the place connected to the condition. Thus, we
check also in the Petri net that this condition is fulfilled before firing the transi-
tion. Each state that may contain regions is connected via S-T1 to a transition
that is the target of pre arcs from all places of final states and inhibitor arcs
from all other places in its regions, while the superstate’s place is a contextual
place. This makes sure that, when all substates are final, these substates are no
longer current and, if it exists, the exit-action of the superstate can be initiated.
Similarly, each substate is connected via S-T2 to a transition which is the target
of a pre arc from its superstate. This makes sure that, when a state transition
leaves this superstate, also all substates are no longer current. Each region is
connected via R-T3 to a transition which makes sure that, when no state inside
this region is current, also the superstate is deactivated. For the handling of the
special "exit"-events, each state which may be a superstate is connected via
S-Pe to a place which handles the proper execution of this event regarding T1-
and T3-transitions.

For the initialization and the semantical steps, all places corresponding to
currently active states will be marked. Note, that for the handling of the hi-
erarchical (de)activation the proper open places may fire triggered by the cor-
responding semantical rules for the statecharts. Thus, the Petri net for itself
shows different semantical behavior than the statechart, but every semantical
statechart step can be simulated by the Petri net.

start

L0,S

∅
L0,C

∅
L0,T

∅

R0,S R0,C R0,T

S-P

S-T1

S-Pe e

T1

S

name="sm"
isInitial=true
isFinal=false

tr0,S tr0,C tr0,T

tL0sL0

tR0sR0

Fig. 3. The rule start

The start graph is the empty graph,
and the first rule to be applied exactly once
is the triple rule start shown in Fig. 3,
creating the outermost state and its corre-
sponding places and transition. In Fig. 4,
the triple rule newRegion is depicted which
allows to create a new region of a state.
Since each region has to have an initial
state, this initial state is created and con-
nected to a place. Also the additional T1-, T2-, and T3-transitions are created
and connected accordingly. The application condition forbids that the superstate
is final or already a substate of another state. Note, that we allow parameters for
the rules. Thus, the user has to declare the name of the newly created state when

154

newRegion(sname:String)

L1,S L1,C L1,T

1:S S-P
S-Pe

S-T1

e

T1

R1,S R1,C R1,T

1:S

R

S

name=sname

isInitial=true

isFinal=false

e

T2

T3
T1

T1

e

S-P

S-Pe

S-P

R-T3

S-T2

S-T1

S-Pe

S-T1

ac1 = ¬∃p1 ∧ ¬∃q1

L1 L1,C L1,T
1:S

isFinal=true

L1 L1,C L1,TR S R 1:S

p1

q1

sL1 tL1

sR1 tR1

tr1,S tr1,C tr1,T

newFinalState

L3,S L3,C L3,T

1:S

2:R

S-T1

S-P

R-T3

T1

T3

R3,S R3,C R3,T

1:S

2:R

S

name="final"

isInitial=false

isFinal=true

S-T1

S-P

S-P

S-T2

R-T3

T1

T2 T3

ac3 = ¬∃p3

L3 L3,C L3,T1:S 2:R
S

isFinal=true

p3

sL3 tL3

sR3 tR3

tr3,S tr3,C tr3,T

Fig. 4. The rules newRegion and newFinalState

applying this triple rule. For the creation of other than initial and final states,
the triple rule newState is used which is very similar to the rule newRegion and
thus not depicted here. The only difference between both rules is that newState
already contains the region in the left-hand side which is otherwise created by
newRegion. Moreover, the application condition is extended by ensuring that
there is not already a state with the new name in this region.

newTransition(ename:String) / ename="exit"

L4,S L4,C L4,T

1:S
2:S

S-P
S-P

e

T1

R4,S R4,C R4,T

1:S

2:S

T

E
name=ename

T

S-P

S-P

E-P

T-T

e

T1

ac4 = ¬∃p4 ∧ ¬∃q4 ∧ (∃r4 ∨ ∃s4)

L4 L4,C L4,T1:S 2:S
E

name=ename

L4 L4,C L4,T2:S
1:S

isFinal=true

L4 L4,C L4,T1:S 2:SR

L4 L4,C L4,T

S

S

R

R

1:S

2:S

begin
end

sL4 tL4

sR4 tR4

tr4,S tr4,C tr4,T

p4

q4

s4

r4

Fig. 5. The rule newTransition

In the right of Fig. 4, the
triple rule for creating final states
is shown. A corresponding place
is created in the target compo-
nent, which is connected to the
T1-transition of the superstate, in-
hibits the T3-transition of the re-
gion, and there is a new transition
with the superstate as inhibitor
connected by S-T2. The applica-
tion condition of this rule makes
sure that only one final state per
region is allowed.

For the creation of a new
transition, the triple rules new-
Transition in Fig. 5 and new-
TransitionOldEvent (not depic-
ted) are used. A new transition in
the source part connected with a
new Petri net transition in the tar-
get part is created, and in case of

155

a new event, this event is connected with a new place. Moreover, for exit-
transitions the rules have to be extended handling the e-place as depicted by the
dotted elements in the target component of Fig. 5. For newTransitionOldEvent,
the left-hand side already contains an event and the corresponding place such
that the transition is connected with this place. The application conditions for-
bid that the begin-state is a final state (q4), and make sure that either states
within the same region (r4) or in different states (s4) are connected. Note, that in
general we use boolean formulas over application conditions because pure NACs
are not powerful enough.

newGuard

L6,S L6,C L6,T

1:S

2:T

S-P

T-T

R6,S R6,C R6,T

1:S

2:T

G

S-P

T-T

ac6 = ¬∃p6 ∧ ¬∃q6 ∧ ¬∃r6
L6 L6,C L6,T1:S 2:T G

L6 L6,S L6,C

L6 L6,C L6,T
1:S 2:T E

name="exit"

sL6 tL6

sR6 tR6

tr6,S tr6,C tr6,T

p6

r6

q6

Fig. 6. The rule newGuard

In Fig. 6, the triple rule newGuard
is shown which creates the guard con-
ditions of a transition. The guard con-
dition is a state, whose correspond-
ing place is connected as pre and post
place of the corresponding net transi-
tion. The application conditions ensure
that only one guard per transition is al-
lowed and that a transition with exit-
event is not guarded at all. In addi-
tion, the rule nextGuard, which is not
depicted, only adds the edge and the
corresponding pre and post arcs for an
already existing guard. Moreover, the
rule newAction (not depicted) adds an
action at a transition in the statechart
model if none is present, while the Petri is not changed at all.

The statechart example given in Fig. 1 can be constructed by the application
of the following triple rules: 1× start, 5× newRegion, 5× newState, 2× new-
FinalState, 9× newTransition, 1× newTransitionExit, 2× newTransition-
OldEvent, 2 × newGuard, 2× newAction. Choosing a proper transformation se-
quence and the right matches, the result in the source component is our state-
chart example.

In the target component we find the Petri net depicted in Fig. 7, where we
have labeled the places and transitions with the names of the corresponding
statechart elements and correspondence node names to ease the recognition.
Moreover, we do not show unconnected T1-transitions and e-places.

The source rules including suitable derived application conditions represent
a generating grammar for our statechart models. All models are typed over the
type graph and respect the specified constraints. For the target rules, only a sub-
set of Petri nets can be generated, but all models obtained from transformations
using the target rules are well-formed, because they are typed over the Petri net
type graph and we cannot generate double arcs. This is due to the fact that the
rules either create only arcs from or to a new element or the multiple application
is forbidden as in the rule newGuard as part of the application condition.

156

produced

prepare

empty

full

wait

consumed

next

produce

incbuff

decbuff

consume

prod

fail

exit

error

call

repair

final

arrive

repair

e

error

e

prod

finish

final

sm

e

sm

T

T

T

T

T

T

T2 T2 T2

T2 T2 T2

T1

prod

T T

T1

error

T2

T2

T2

T

T

T

T

T3 T3 T3

T3

T2

T2

T1 T3

Fig. 7. The corresponding Petri net

4 Model Transformation Based on Triple Graph
Transformation with Application Conditions

As shown in the example in Section 3, rules with application conditions are more
expressive and allow to restrict the application of the rules. Thus, we enhance
triple rules and combine a triple rule tr without application conditions with an
application condition ac over L. Then a triple transformation is applicable if the
match m satisfies the application condition ac. From now on, a triple rule denotes
a rule with application conditions, while the absence of application conditions is
explicitly mentioned.

157

Definition 1 (Triple rule and transformation). A triple rule tr = (tr :
L→ R, ac) consists of triple graphs L and R, an M-morphism tr : L→ R, and
an application condition ac over L.

A direct triple transformation G =
tr,m
==⇒ H of a triple graph G via a triple

rule tr and a match m : L → G with m |= ac is given by the direct triple

transformation G =
tr,m
==⇒ H via the corresponding triple rule without application

conditions.

Example 1. Examples for triple rules using application conditions have been
shown in Section 3.

For the extension of the derived rules with application conditions, we need
more specialized application conditions that can be assigned to the source and
forward rules.

Definition 2 (Special application conditions). Given a triple rule tr : L→
R, an application condition ac = ∃(a, ac′) over L with a : L→ P is an

– S-application condition if aC , aT are identities, i.e. PC = LC , PT = LT ,
and ac′ is an S-application condition over P , and

– S-extending application condition if aS is an identity, i.e. PS = LS, and ac′

is an S-extending application condition over P .

(LS LC LT)

(PS PC = LC PT = LT)

ac

ac′

S-application condition S-extending application condition

(LS LC LT)

(PS = LS PC PT)

ac

ac′

sL tL

sP tP =tL

aS idLC
idLT

sL tL

sP tP

idLS
aC aT

Moreover, true is an S- and S-extending application condition, and if ac, aci
are S- or S-extending application conditions so are ¬ac, ∧i∈Iaci, and ∨i∈Iaci.

For the assignment of the application condition ac to the derived rules, the
application condition has to be consistent to the source and forward rules, which
means that we must be able to decompose ac into S- and S-extending application
conditions.

Definition 3 (S-consistent application condition). Given a triple rule tr =
(tr : L → R, ac), then ac is S-consistent if it can be decomposed into ac ∼=
ac′S ∧ac′F such that ac′S is an S-application condition and ac′F is an S-extending
application condition.

Example 2. All triple rules in Section 3 have S-consistent application conditions.
For example, the application condition ac4 of the rule newTransition in Fig.
5 is an S-application condition, thus no decomposition is necessary. Moreover,
the application condition ac6 of the rule newGuard in Fig. 6 can be decomposed
into the S-application condition ¬∃p6 ∧ ¬∃r6 and the S-extending application
condition ¬∃q6.

158

newGuardS

L6,S

1:S

2:T
∅ ∅

R6,S

1:S

2:T

G ∅ ∅

ac6,S = ¬∃p6,S ∧ ¬∃r6,S

L6,S
1:S

2:T G
∅ ∅

L6,S

1:S 2:T

E

name="exit"

∅ ∅

∅ ∅

∅ ∅

tr6,S ∅ ∅

p6,S

r6,S

newGuardF

R6,S L6,C L6,T

1:S

2:T

3:G

S-P

T-T

R6,S R6,C R6,T

1:S

2:T

3:G

S-P

T-T

ac6,F = ¬∃q6,F

L6,F

1:S 2:T

3:G
S-P T-T

tr6,S ◦ sL6 tL6

sR6 tR6

idR6,S tr6,C tr6,T

q6,F

Fig. 8. The source and forward rules of newGuard

For an S-consistent application condition, we obtain the application condi-
tions of the source and forward rules from the S- and S-extending parts of the
application condition, respectively.

Definition 4 (Derived rules with application conditions). Given a triple
rule tr = (tr : L→ R, ac) with S-consistent ac ∼= ac′S ∧ ac′F we translate ac′S to
an application condition acS on (LS ← ∅→ ∅) using only the source morphisms
of ac′S and similarly ac′F to an application condition acF on (RS ← LC → LT)
using only the connection and target morphisms of ac′F . This leads to the source
rule (trS , acS) and the forward rule (trF , acF).

Example 3. In Fig. 8, the source and forward rules newGuardS and newGuardF of
the rule newGuard in Fig. 6 are shown. The S-application condition ¬∃p6∧¬∃r6 is
translated to the source rule, where the source graphs of the original application
conditions are kept, but the connection and target graphs are empty now. The
S-extending application condition ¬∃q6 is translated to the forward rule, where
the source graph is adapted to the new left-hand side.

Now we want to analyze how a triple transformation can be decomposed into
a transformation applying first the source rules followed by the forward rules.
Match consistency of the decomposed transformation means that the comatches
of the source rules define the source part of the matches of the forward rules.
This helps us to define suitable forward model transformations, which have to
be source consistent to ensure a valid model. Note, that triple transformation
sequences always satisfy the application conditions of the corresponding rules.

Definition 5 (Source and match consistency). Given a sequence
(tri)i=1,...,n of triple rules with S-consistent application conditions leading to cor-
responding sequences (triS)i=1,...,n and (triF)i=1,...,n of source and forward rules.

A triple transformation sequence G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn via first tr1S , . . . , trnS

159

and then tr1F , . . . , trnF with matches miS and miF and comatches niS and niF ,
respectively, is match consistent if the source component of the match miF is
uniquely defined by the comatch niS.

A triple transformation Gn0 =
tr∗F==⇒ Gnn is called source consistent if there is

a match consistent sequence G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn.

We can split a transformation G0 =tr1=⇒ G1 ⇒ . . . =trn==⇒ Gn into transforma-
tions G0 =tr1S==⇒ G′0 =tr1F==⇒ G1 ⇒ . . . =trnS==⇒ G′n−1 =trnF==⇒ Gn. But to apply first
the source and then the forward rules, these have to be independent in a certain
sense. In the following theorem, we show that such a decomposition into a match
consistent transformation can be found and, vice versa, each match consistent
transformation can be composed to a transformation via the corresponding triple
rules if the application conditions are S-consistent. This result is an extension
of the corresponding result for triple transformations without application condi-
tions [12] and with negative application conditions [13]. It is essential for concepts
and results of model transformations with application conditions below.

Theorem 1 (Decomposition and composition). For triple transformation
sequences with S-consistent application conditions the following holds:

1. Decomposition: For each triple transformation sequence G0 =tr1=⇒ G1 ⇒
. . . =trn==⇒ Gn there is a corresponding match consistent triple transformation
sequence G0 = G00 =tr1S==⇒ G10 ⇒ . . . =trnS==⇒ Gn0 =tr1F==⇒ Gn1 ⇒ . . . =trnF==⇒
Gnn = Gn.

2. Composition: For each match consistent triple transformation sequence
G00 =tr1S==⇒ G10 ⇒ . . . =trnS==⇒ Gn0 =tr1F==⇒ Gn1 ⇒ . . . =trnF==⇒ Gnn there is a
triple transformation sequence G00 = G0 =tr1=⇒ G1 ⇒ . . . =trn==⇒ Gn = Gnn.

3. Bijective Correspondence: Composition and Decomposition are inverse
to each other.

Proof idea. Similar to [12], the proof is based on the Concurrency Theorem
and the Local Church–Rosser Theorem, but now with application conditions as
shown in [15]. We use the fact that tri = triS ∗Ei

triF and that the transfor-
mations via triS and trjF are sequentially independent for i > j, which can be
extended to triple rules with application conditions by showing the compatibility
of the application conditions due to S-consistency. Thus, the proof from [12] can
be done analogously for rules with application conditions. �

Based on source consistent forward transformations we define model trans-
formations, where we assume that the start graph is the empty graph.

Definition 6 (Model transformation). A (forward) model transformation

sequence (GS , G0 =
tr∗F==⇒ Gn, GT) is given by a source graph GS, a target graph

GT , and a source consistent forward transformation G0 =
tr∗F==⇒ Gn with G0 =

(GS
∅←− ∅ ∅−→ ∅) and Gn,T = GT .

A (forward) model transformation MTF : V LS V V LT is defined by all
(forward) model transformation sequences.

160

Example 4. As explained for our example transformation in Section 3, applying
the corresponding source rule sequence to the empty start graph we obtain our
statechart example. This statechart model can be transformed into the Petri net
via the forward rules. This triple transformation is source consistent, since the
matches of the source parts for the forward rules are uniquely defined by the
comatches of the source rules. Thus, we actually obtain a model transformation
sequence from the statechart model in Fig. 1 to the Petri net in Fig. 7.

For all notions and results concerning source and forward rules, we obtain
the dual notions and results for target and backward rules. Thus, an applica-
tion condition ac is T -consistent if it can be decomposed into ac ∼= ac′T ∧ ac′B ,
where ac′T is a T -application condition with identities aS , aC and ac′B is a T -
extending application condition with identity aT . This leads to the corresponding
target and backward rules with application conditions and the dual composition
and decomposition properties hold for triple transformation sequences with T -
consistent application conditions. Moreover, a backward model transformation
sequence (GT , G

′
0 =

tr∗B==⇒ G′n, GS) is based on a target consistent backward trans-

formation G′0 =
tr∗B==⇒ G′n with G′0 = (∅ ∅←− ∅ ∅−→ GT) and G′n,S = GS .

4.1 Results for Model Transformations with Application Conditions

Based on Thm. 1 we can show correctness, completeness, backward information
preservation, and termination of model transformations. The first result shows
that transformations are correct and complete regarding the source and target
languages.

Theorem 2 (Correctness and completeness w.r.t. V LS, V LT). Each

model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT) and (GT , G

′
0 =

tr∗B==⇒ G′n,
GS) is correct with respect to the source and target languages, i.e. GS ∈ V LS

and GT ∈ V LT .
For each GS ∈ V LS there is a corresponding GT ∈ V LT such that there

is a model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT). Similarly, for each

GT ∈ V LT there is a corresponding GS ∈ V LS such that there is a model
transformation sequence (GT , G

′
0 =

tr∗B==⇒ G′n, GS).

Proof. If G0 =
tr∗F==⇒ Gn is source consistent we have a match consistent sequence

∅ =
tr∗S==⇒ G0 =

tr∗F==⇒ Gn by Def. 5 . By composition in Thm. 1 there is a triple
transformation ∅ =tr∗=⇒ Gn with GS = Gn,S ∈ V LS and GT ∈ V LT .

For GS ∈ V LS there exists a triple transformation ∅ =tr∗=⇒ G, which can be

decomposed by Thm. 1 into a match consistent sequence ∅ =
tr∗S==⇒ G0 = (GS

∅←−
∅ ∅−→ ∅) =

tr∗F==⇒ G, and by definition (GS , G0 =
tr∗F==⇒ G,GT) is the required model

transformation sequence with GT ∈ V LT .
Dually, this holds for backward model transformation sequences. ut

161

Example 5. Since our example in Section 3 represents a well-defined model trans-
formation sequence, our statechart and Petri net are correct. Moreover, for each
valid statechart model we obtain a correct Petri net model, and vice versa. Note,
that for the backward translation this only holds for Petri nets which are correct
w.r.t. our target language, and not the language of all well-formed Petri nets.

A forward model transformation from GS to GT is backward information pre-
serving concerning the source component if there is a backward transformation
sequence from GT leading to the same source graph GS .

Definition 7 (Backward information preserving). A forward transforma-

tion sequence G =
tr∗F==⇒ H is backward information preserving if for the triple

graph H ′ = (∅ ∅←− ∅ ∅−→ HT) there is a backward transformation sequence

H ′ =
tr∗B==⇒ G′ with G′S

∼= GS.

This theorem is an extension of the corresponding result in [12] to triple
transformations with application conditions.

Theorem 3 (Backward information preservation). If all triple rules are S-

and T -consistent, a forward transformation G =
tr∗F==⇒ H is backward information

preserving if it is source consistent.

Proof. If G =
tr∗F==⇒ H is a source consistent sequence then by Def. 5 there exists a

match consistent sequence ∅ =
tr∗S==⇒ G =

tr∗F==⇒ H leading to the triple transforma-
tion sequence ∅ =tr∗=⇒ H using Thm. 1. From the decomposition, we also obtain

a match consistent sequence ∅ =
tr∗T==⇒ H ′ =

tr∗B==⇒ H using the target and backward

rules, with H ′T = HT and H ′C = H ′S = ∅. Thus, G =
tr∗F==⇒ H is backward infor-

mation preserving. ut
Example 6. The Petri net in Fig. 7 can be transformed into the statechart in
Fig. 1 using the backward rules of our model transformation in the same order as
the forward rules were used for the forward transformation. Indeed, this holds
for each Petri net obtained of a model transformation sequence from a valid
statechart model.

If the source and target rules are creating, forward and backward transfor-
mation sequences are terminating, which means that we do not find infinite
model transformation sequences. Together with local confluence, this would lead
to confluence and functional behavior of model transformations.

Theorem 4 (Termination). Consider a source model GS ∈ V LS (target model
GT ∈ V LT) and a set of triple rules such that GS (GT) and all rule components
are finite on the graph part and the triple rules are creating on the source (target)

component. Then each model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT)

((GT , G
′
0 =

tr∗B==⇒ G′n, GS)) is terminating, i.e. any extended sequence G0 =
tr∗F==⇒

Gn =
tr′+F==⇒ Gm (G′0 =

tr∗B==⇒ G′n =
tr′+B==⇒ G′m) is not source (target) consistent.

162

Proof. Let G0 =
tr∗F==⇒ Gn be a source consistent forward sequence such that

∅ =
tr∗S==⇒ G0 =

tr∗F==⇒ Gn is match consistent, i.e. each comatch ni,S determines the
source component of the match mi,F . Thus, also each forward match mi,F deter-
mines the corresponding comatch ni,S . By uniqueness of pushout complements
along M-morphisms the comatch ni,S determines the match mi,S of the source
step, thus mi,F determines mi,S (∗).

If G0 =
tr∗F==⇒ Gn =

tr(n+1,F),m(n+1,F)============⇒ Gn+1 =
tr′′∗F===⇒ Gm is a source consistent for-

ward sequence then there is a corresponding source sequence ∅ =
tr∗S==⇒ G′ =

trn+1,S====⇒
G′′ =

tr′′∗S==⇒ G0 leading to match consistency of the complete sequence ∅ =⇒∗ Gm.
Using (∗) it follows that G′ ∼= G0, which implies that we have a transforma-
tion step G0 =

trn+1,S====⇒ G′′ ⊆ G0, because triple rules are non-deleting. This is a
contradiction to the precondition that each rule is creating on the source com-
ponent implying that G′ 6∼= G0. Therefore, the forward transformation sequence
G0 =

tr∗F==⇒ Gn cannot be extended and is terminating.
Dually, this can be shown for backward model transformation sequences. ut

Example 7. All triple rules in our example in Section 3 are finite on the graph
part and source creating. Thus, all model transformation sequences based on
finite statechart models are terminating. Note, that this does not hold for the
backward direction, since the rule newAction is not target creating. Thus, the
corresponding backward rule can be applied infinitary often.

5 Conclusion

In this paper, we have extended the theory of model transformations based on
TGGs to rules with nested application conditions [2], which are known to be
equivalent to first order logic on graphs. This enhances the expressiveness of
model transformations including that of the generation of source and/or target
languages. We have discussed in detail a model transformation from statecharts
to Petri nets, where the use of application conditions allows to specify and trans-
late more general statecharts then those considered in [1] using an inplace model
transformation. We have presented main results for termination, correctness,
completeness, and information preservation extending those for the case with
NACs in [13] and without NACs in [12].

Our new results are based on the Local Church–Rosser, Parallelism, and
Concurrency Theorems with nested application conditions in [15]. As future
work it remains to extend also the results concerning functional behaviour in
[16] and [17] to the case of rules with nested application conditions based on the
“on-the-fly construction” in [11]. This would allow to meet the “Grand Research
Challenge of the TGG Community” in [4] for our enhanced framework. Moreover,
it is open to show that our model transformation from statecharts to Petri nets is
semantically correct, where the semantics of the source and target language could
be based on a suitable operational semantics. For statecharts, an operational
semantics based on amalgamated graph transformation is presented in [18].

163

References

[1] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs. Springer (2006)

[2] Habel, A., Pennemann, K.H.: Correctness of High-Level Transformation Systems
Relative to Nested Conditions. MSCS 19(2) (2009) 245–296

[3] Schürr, A.: Specification of Graph Translators With Triple Graph Grammars.
In Tinhofer, G., ed.: Proceedings of WG 1994. Volume 903 of LNCS., Springer
(1994) 151–163

[4] Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G., eds.: Proceedings of ICGT 2008. LNCS, Springer
(2008) 411–425

[5] König, A., Schürr, A.: Tool Integration with Triple Graph Grammars - A Survey.
ENTCS 148(1) (2006) 113–150

[6] Guerra, E., Lara, J.: Attributed Typed Triple Graph Transformation with Inheri-
tance in the Double Pushout Approach. Technical Report UC3M-TR-CS-2006-00,
Universidad Carlos III, Madrid, Spain (2006)

[7] Taentzer, G., Ehrig, K., Guerra, E., Lara, J., Lengyel, L., Levendovsky, T., Prange,
U., Varró, D., Varró-Gyapay, S.: Model Transformation by Graph Transformation:
A Comparative Study. In: Proceedings of MTP 2005. (2005)

[8] Guerra, E., Lare, J.: Model View Management with Triple Graph Grammars.
In Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G., eds.: Pro-
ceedings of ICGT 2006. Volume 4178 of LNCS., Springer (2006) 351–366

[9] Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, Extensions, Imple-
mentations, and Application scenarios. Technical Report TR-ri-07-284, University
of Paderborn, Germany (2007)

[10] Ehrig, H., Ermel, C., Hermann, F.: On the Relationship of Model Transformations
Based on Triple and Plain Graph Grammars. In Karsai, G., Taentzer, G., eds.:
Proceedings of GraMoT 2008, ACM (2008)

[11] Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-Fly Construction, Correct-
ness and Completeness of Model Transformations Based on Triple Graph Gram-
mars. In Schürr, A., Selic, B., eds.: Proceedings of MODELS 2009. Volume 5795
of LNCS., Springer (2009) 241–255

[12] Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Pre-
serving Bidirectional Model Transformations. In Dwyer, M., Lopes, A., eds.:
Proceedings of FASE 2007. Volume 4422 of LNCS., Springer (2007) 72–86

[13] Ehrig, H., Hermann, F., Sartorius, C.: Completeness and Correctness of Model
Transformations based on Triple Graph Grammars with Negative Application
Conditions. ECEASST 18 (2009) 1–18

[14] OMG: Unified Modeling Language, Superstructure, Version 2.2. (2009)
[15] Ehrig, H., Habel, A., Lambers, L.: Parallelism and Concurrency Theorems for

Rules with Nested Application Conditions. ECEASST 26 (2010) 1–23
[16] Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal Analysis of Functional

Behaviour for Model Transformations Based on Triple Graph Grammars. In:
Proceedings of ICGT 2010. Volume 6372 of LNCS., Springer (2010) 155–170

[17] Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient Analysis and Execution of
Correct and Complete Model Transformations Based on Triple Graph Grammars.
(2010) Submitted to MDI Workshop at MODELS 2010.

[18] Golas, U., Biermann, E., Ehrig, H., Ermel, C.: A Visual Interpreter Semantics
for Statecharts Based on Amalgamated Graph Transformation. In: Proceedings
of GCM 2010. (2010)

164

Weakest Liberal Preconditions
relative to HR∗ Graph Conditions

Hendrik Radke
hendrik.radke@informatik.uni-oldenburg.de

Carl v. Ossietzky Universität Oldenburg, Germany?

Abstract. Graph conditions are very important for graph transforma-
tion systems and graph programs in a large variety of application areas.
With HR∗ graph conditions, non-local graph properties like “there exists
a path of arbitrary length” or “the graph is cycle-free” can be expressed.
Together with graph programs, these conditions form a framework for
writing programs over graphs, and specifying invariants and properties
for these graphs. This paper takes a step towards automating the ver-
ification of graph programs with pre- and postconditions. Using Dijk-
stra’s approach, the postcondition is transformed “over the program” to
a weakest precondition. The correctness problem is thus reduced to the
problem whether or not the precondition implies the weakest precondi-
tion, which can be tackled with a theorem prover.

1 Introduction

Formal methods, like the verification of programs with respect to formal system
properties, play an important role in the development of trustworthy systems.
In our approach, we use graphs to model real-world states and double-pushout
graph transformation rules [EEPT06] to describe state changes. Structural prop-
erties of the system are described by graph conditions. In [HP09,Pen09], nested
graph conditions have been discussed as a formalism to describe structural prop-
erties. Nested conditions are expressively equivalent to first-order graph formu-
las and can express local properties in the sense of Gaifman [Gai82]. In [HR10],
HR+ graph conditions are introduced which are more expressive than monadic
second-order graph formulas [Cou97]. These conditions make it possible to ex-
press non-local properties like the existence of a path of arbitrary length, the
connectedness or circle-freeness of a graph. In this paper, we propose HR∗ condi-
tions generalizing HR and HR+ conditions. Our goal is to check the correctness
of graph programs relative to a HR∗ pre- and postcondition. Following Dijkstra’s
approach [Dij76], the correctness of a program relative to pre- and postcondi-
tions can be shown by constructing a weakest precondition from the program
and the postconditon. A weakest precondition is constructed by first transform-
ing the postcondition into a right HR∗ application condition for the program,
? This work is supported by the German Research Foundation (DFG), grants GRK

1076/1 (Graduate School on Trustworthy Software Systems).

165

then a transformation from the right to a left application condition and finally,
from the left application condition to the weakest precondition. This is a gen-
eralization of the transformations from [HPR06], where the variables and the
corresponding replacement systems have to be regarded. This way, the correct-
ness problem can be reduced to the problem whether the precondition implies
the weakest precondition.

Example 1. A small example may illustrate how HR conditions look and how
they can be used to form non-local conditions.

cx = ∃(•
1

•
2

+), with + ::= •
1
•
2
|•
1
• •

2

+

The condition cx has the meaning “There is a path of arbitrary length from
the image of node 1 to the image of node 2”. The paths of arbitrary length are
represented by the hyperedge labeled +. Replacing the hyperedge according to
the replacement rules, we gain a series of graphs without hyperedges •

1
•
2
,

•
1

• •
2
, •

1
• • •

2
, . . ., i.e. paths of arbitrary length from node

1 to node 2.

The paper is organized as follows. Section 2 introduces HR∗ conditions and
graph transformation rules. In Section 3, basic transformations for HR∗ con-
ditions are defined. These transformations are used in Section 4 to define the
transformation of programs and postconditions into weakest preconditions. The
paper is closed with Section 5, where the conclusion is drawn and further work
is suggested.

2 HR∗ conditions

Graphs with variables consist of nodes, edges, and hyperedges. Edges have one
source and one target and are labeled by a symbol of an alphabet; hyperedges
have an arbitrary sequence of attachment nodes (indicated by tentacles between
the hyperedge and the attachment node) and are labeled by variables.

Definition 1 (Graphs with variables). Let C = 〈CV,CE,X〉 be a fixed, fi-
nite label alphabet where X is a set of variables with a mapping rank: X → N0

defining the rank of each variable. A graph (with variables) over C is a sys-
tem G = (VG,EG,YG, sG, tG, attG, lvG, leG, lyG) consisting of finite sets VG,
EG, and YG of nodes (or vertices), edges, and hyperedges, source and target
functions sG, tG : EG → VG, an attachment function attG : YG → V∗G

1, and
labeling functions lvG : VG → CV, leG : EG → CE, lyG : YG → X such that, for
all y ∈ YG, | attG(y)| = rank(lyG(y)). The set of all graphs with variables we
call GX , while G denotes the set of all graphs without variables, i.e. with YG = ∅
for any G ∈ G.

1 This also includes hyperedges with zero tentacles.

166

Remark 1. The definition extends the well-known definition of graphs [Ehr79]
by the concept of hyperedges in the sense of [Hab92]. Graphs with variables also
may be seen as special hypergraphs where the set of hyperedges is divided into
a set of edges labelled with terminal symbols and a set of hyperedges labelled
by nonterminal symbols.

We extend the definition of graph morphisms to the case of graphs with
variables.

Definition 2 (Graph morphisms with variables). A (graph) morphism
(with variables) g : G→ H consists of functions gV : VG → VH , gE : EG → EH ,
and an injective2 function gY : YG → YH that preserve sources, targets, at-
tachment nodes, and labels, that is, sH ◦gE = gV ◦ sG, tH ◦gE = gV ◦ tG,
attH = g∗V ◦ attG, lvH ◦gV = lvG, leH ◦gE = leG, and lyH ◦gY = lyG. (For
a mapping g : A → B, the free symbolwise extension g∗ : A∗ → B∗ is defined by
g∗(a1 . . . ak) = g(a1) . . . g(ak) for all k ∈ N and ai ∈ A (i = 1, . . . , k).) We call
Dom(g) = G the domain of g and Ran(g) = H the codomain of g. The term
g(G) denotes the result of the application of the functions in g on graph G.

A morphism g is injective (surjective) if gV, gE, and gY are injective (sur-
jective), and an isomorphism if it is both injective and surjective. In the latter
case G and H are isomorphic, which is denoted by G ∼= H. The composition
h ◦ g of g with a graph morphism h : H →M consists of the composed functions
hV ◦ gV, hE ◦ gE, and hY ◦ gY. For a graph G, the identity idG : G→ G consists
of the identities idGV , idGE , and idGY on GV, GE, and GY, respectively.

Example 2. Consider graphs G,H over the label alphabet C = 〈{A,B}, {�},X〉
where the symbol � stands for the invisible edge label and is not drawn and
X = {u, v} is a set of variables that have rank 4 and 2, respectively. The graph G
contains five nodes with the labels A and B, respectively, seven edges with label
� which is not drawn, and one hyperedge of rank 4 with label u. Additionally,
the graph H contains a node, an edge, and a hyperedge of rank 2 with label v.

B

A

B

BB

u
1

2
3

4

↪→ B

A

B

BB B

u
1

2
3

4 v
1

2

The drawing of graphs with variables combines the drawing of graphs in
[Ehr79] and the drawing of hyperedges in [Hab92,DHK97]: Nodes are drawn by

2 Injectivity of gY ensures that replacement morphisms (defined later) can be com-
posed properly, see also [HR10].

167

circles carrying the node label inside, edges are drawn by arrows pointing from
the source to the target node and the edge label is placed next to the arrow, and
hyperedges are drawn as boxes with attachment nodes where the i-th tentacle
has its number i written next to it and is attached to the i th attachment node
and the label of the hyperedge is inscribed in the box. For visibility reasons, we
sometimes write • •x instead of • •x1

2 . Arbitrary graph morphisms
are drawn by the usual arrows “→”; the use of “↪→” indicates an injective graph
morphism. The actual mapping of elements is conveyed by indices, if necessary.

Hyperedges do not only play a static part as building blocks of graphs with
variables, but also a dynamic part as place holders for graphs. While a hyperedge
is attached to a sequence of attachment nodes, a graph that should replace it
must be equipped with an equally long sequence of nodes. This node sequence
controls which attachment point of the hyperedge is fused with which node from
the replacing graph.

Definition 3 (Pointed graphs with variables). A pointed graph with vari-
ables 〈G,pinG〉 is a graph with variables G together with a sequence pinG =
v1 . . . vn of pairwise distinct nodes from G. We write rank(G) for the number n
of nodes. For x ∈ X with rank(x) = n, x• denotes the pointed graph with the
nodes v1, . . . , vn, one hyperedge attached to v1 . . . vn, and sequence v1 . . . vn.

In [PH96,Pra04], variables are substituted by arbitrary graphs. In this paper,
variables are replaced by graphs generated by a hyperedge replacement system.

Definition 4 (HR system). A hyperedge replacement (HR) system R is a
finite set of replacement pairs of the form x/R where x is a variable and R a
pointed graph with rank(x) = rank(R).

•

• •

•

x

1

2
3

4
•

• •

•1

2 3

4

R

Given a graph G, the application of the replacement pair x/R to a hyperedge y
with label x proceeds in two steps:

1. Remove the hyperedge y from G, yielding the graph G−{y}.
2. Construct the disjoint union (G−{y})+R and fuse the i th node in attG(y)

with the i th attachment point of R, for i = 1, . . . , rank(y), yielding the
graph H.

Then G directly derives H by x/R applied to y, denoted by G ⇒x/R,y H or
G⇒R H provided x/R ∈ R. A sequence of direct derivations G⇒R . . .⇒R H
is called a derivation from G to H, denoted by G⇒∗R H. For every variable x,
R(x) = {G ∈ GX | x• ⇒∗R G} denotes the set of all graphs derivable from x•

by R.

168

Example 3. The hyperedge replacement systemR with the rules given in Backus-

Naur form + ::= •
1
•
2
|•
1
• •

2

+ generates the set of all directed paths from
node 1 to node 2.

In the following, let R be a fixed HR-system.3 Hyperedge replacement sys-
tems define replacements.

Definition 5 (Replacement). Let G•X denote the set of all pointed graphs.
Let G be a graph and Y ⊆ YG be a set of hyperedges to be replaced. A mapping
repl : Y → G•X is a base for replacement in G if, for all y ∈ Y, repl(y) ∈
R(lyG(y)). Dom(repl) = Y is the domain of repl. The replacement of Y in G
by repl, denoted by repl(G), is obtained from G by simultaneously replacing all
hyperedges y in Y by repl(y).We write G =⇒repl H if H ∼= repl(G).

Replacement morphisms consist of a base for replacement and a injective
graph morphism. For the composition of graph and replacement morphisms, see
[HR10].

Definition 6 (Replacement morphisms). A replacement morphism 〈repl, g〉
consists of a base for replacement repl in G and an injective graph morphism
G ↪→g H ′. It is injective if g is injective.

Notation 1 In order to discern different types of morphisms in graphs, different
types of arrows are used. Replacement morphisms are symbolized by double tips
() and replacements by double shafts ().

We now define HR∗ conditions, a slight extension of HR+ conditions [HR10].
Instead of having conditions X v Y , HR∗ conditions have “splitting” condi-
tions of the form ∃(Y $ X ⊕ Y’ , c) that decompose the hyperedge Y into
X and a new hyperedge Y ′. This allows us to scope in on a part X of the re-
placement of Y , while at the same time keeping an injective representation of
Y .

Definition 7 (union of graphs).

G0 G1

G2 G′
(PO)

For two graphs with variables G1, G2, the union G1 ⊕ G2 is
defined as the pushout object G′ constructed from g1 : G0 → G1

and g2 : G0 → G2, where G0 constitutes the common parts of G1

and G2 (as indicated by indices in G1 and G2).

Definition 8 (HR∗ (graph) condition). HR∗ conditions are inductively de-
fined as follows. For a graph with variables P , true is a condition over P . For
every morphism a : P → C and every condition c over C, ∃(a, c) is a condi-
tion over P . For every graph with variables C and every condition c over C,
∃(P $ C, c) is a condition over P , where P = P ′⊕Q, C = C ′⊕Q, P ′ is a graph

3 This is to prevent the tedious inclusion of R in every condition and improve read-
ability.

169

induced by a set of hyperedges in P , and C ′ is an arbitrary graph in G. Boolean
formulas over conditions over P are conditions over P : For a condition c over
P , ¬c is a condition over P , and for an index set J and HR∗ conditions (cj)j∈J
over P , ∧j∈Jcj is a HR∗ condition over P . A HR∗ condition is finite if every
index set J in this HR∗ condition is finite.

Furthermore, the following abbreviations are used: false abbreviates ¬true, ∃a
abbreviates ∃(a, true), ∀(a, c) abbreviates ¬∃(a,¬c), ∨j∈Jcj abbreviates ¬ ∧j∈J
¬cj , ∀(P ′ $ C ′, c) abbreviates ¬∃(P ′ ⊕Q $ C ′ ⊕Q,¬c) (i.e. identical parts can
be omitted), and ∀(P $ C, c) abbreviates ¬∃(P $ C,¬c).

Remark 2. In the following, HR∗ conditions are shortly called conditions. Con-
ditions in the context of graphs are called constraints, and conditions in the
context of rules are called application conditions.

We define the satisfaction of HR∗ conditions, as an extension of [Pen09].

Definition 9 (satisfaction of HR∗ conditions). A replacement morphism
p : P � H satisfies ∃(a, c) iff there is an injective replacement morphism q such
that q ◦ a = p and q satisfies c. A replacement morphism p satisfies ∃(P $ C, c)
if there is an injective replacement morphism q : C H such that p(P) = q(C)
and q satisfies c.
The satisfaction is extended to Boolean formulas over conditions in the usual
way, i.e., a replacement morphism p satisfies true, p satisfies ¬c iff p does not
satisfy c, and p satisfies ∧i∈I ci iff p satisfies all ci (i ∈ I). A graph G satisfies
the condition c, if c is a condition over ∅ and the morphism ∅ → G satisfies c.
We write p |= c [G |= c] to denote that a replacement morphism p [a graph G]
satisfies c.

Remark 3. For non-injective replacement morphisms, conditions of the form
∃(P $ C, c) are not satisfied.

P C$

H

p q

∃()

Example 4. The following example extends upon the one from the introduction.
It shows a HR∗ condition expressing “There is a path from the image of node
1 to the image of node 2, and all images of nodes on this path (i.e. that can be
reached by splitting the path into two subpaths) have at least three outgoing
edges”. Note that while the nodes 1 and 2 are common to the left- and right-hand
side of the splitting condition, the hyperedges on both sides are not identified.

∃(∅ → •
1

•
2

+ ,∀(•
1

•
2

+ $ •
1

•
3

•
2

+ + ,∃•
1

•
3

•
2

+ + → •
1

•
3

•
2

+ +
• • •

)

with + ::= •
1
•
2
|•
1
• •

2

+

170

HR∗ conditions include HR+ conditions, i.e. for every HR+ condition c, there
is an equivalent HR∗ condition that satisfies the same morphisms. A condition
•
x
v Y is transformed into a HR∗ condition ∃(Y $ •x Y’ , true), where

the replacement system for Y ′ is the same as for Y , with the addition that node
x can exactly once be identified with a derived node. For HR+ conditions with
edges, •

1
•
2

x v Y is transformed into ∃(Y $ •
1

•
2

x Y’ , true), where
the two nodes 1, 2 together with edge x can exactly once be identified with two
nodes and a derived edge.

The advantage of HR+ conditions over HR∗conditions is that they allow
expressions over parts of replacement while retaining a fully injective semantics.
In contrast, the semantics for HR∗ conditions is based on replacement morphisms
that are injective up to replacement, i.e. in the replacements for the hyperedges,
nodes and edges may be joined. The author deems the fully injective semantics
more comfortable and intuitive.

3 Basic transformations of HR∗ conditions

In this section, we define rules and generalize the basic transformations for nested
graph conditions in [HPR06] to HR∗ graph conditions.

Definition 10 (rules). A plain rule p = 〈L l←↩K r
↪→R〉 is a pair of injective

graph morphisms l, r with common domain K called interface. L is called the
left-hand side and R the right-hand side. A left (right) application condition is a
condition over L (R). A rule ρ = 〈p, acL, acR〉 consists of a plain rule p together
with a left and a right application condition acL and acR, respectively.

L K R

G

m

D H

m∗(1) (2)

Given a plain rule p and a morphism m : L → G, a direct derivation consists
of two pushouts (1) and (2). We write G ⇒p,m,m∗ H, G ⇒p H, or short G ⇒
H. The morphism m is called match and m∗ is called comatch. Given a rule
ρ = 〈p, ac〉 and a morphism K → D, there is a direct derivation G ⇒p,m,m∗ H
if G⇒p,m,m∗ H, m |= acL , and m∗ |= acR.

Pushout (1) dictates that the match must satisfy the dangling condition. This
means that any node to be deleted (i.e. in G −D) must not have an edge to a
node which is not deleted (i.e. a node in D). Otherwise, the pushout construction
(1) would leave D with “dangling” edges which have no source or target node
and D would not be a proper graph in G.

Example 5. The (plain) rule ρx = 〈•
1

•
2
←↩ •

1
•
2
↪→ •

1
•
2
〉 deletes an

edge between two nodes 1 and 2. The nodes may be identified, so the rule could
also be applied on a single node with a loop and delete the loop.

The application of this rule on a graph is shown below.

171

•
1

•
2

L •
1

•
2

K •
1

•
2

R

•
1

•
2

•
3

•
4

G •
1

•
2

•
3

•
4

D •
1

•
2

•
3

•
4

H

Now, we define a transformation that converts a constraint into a right ap-
plication condition for a given rule.

Lemma 1 (transformation of constraints into application conditions).
For every HR∗ constraint c over P and every graph morphism m : P → P ′, there
is an application condition A(m, c) such that, for every replacement morphism
p : P ′ � P ′′, p |= A(m, c) ⇐⇒ p ◦m |= c.

This transformation is used to transform a postcondition (over ∅) into a right
application condition (over the right-hand side R of the rule).

Construction 1 For a morphism m : P → P ′, transformation A is inductively
defined as follows:

P

P ′

C

C ′
m

a

a′
m′(1)

A(m,∃(P a−→ C, c)) =
∨

(a′,m′)∈F ∃ (a′,A(m′, c)), where F =
{(a′,m′)|(1) commutes,m′ injective, (a′,m′) jointly epimorphic}

QP

P ′

C

C ′Q′
m m′(1) (2)

For A(m,∃(P $ C, c)), where P = Q⊕P1, C = Q⊕C1

let A(m,∃(P $ C, c)) = ∃(Ran(m) $ m′(C),A(m′, c)) if
the pushout complement (1) can be constructed and (2) is
a pushout, and false otherwise.
For Boolean formulas over conditions and true, the construction of A is straight-
forward: A(m,¬c) = ¬A(m, c), A(m,∧j∈Jcj) = ∧j∈JA(m, cj), and A(m, true) =
true.

Proof. By structural induction over conditions.
Basis. For c = true, we have A(m, c) = true = c.
Hypothesis. Assume that p |= A(m, c′)⇔ p ◦m |= c′ holds for condition c′.
Step. We proceed by case distinction over the structure of c. For the Boolean
conditions c = ¬c′, c = c′ ∧ c′′, the proof is straightforward. For details, see
[Pen09].

172

P

P ′

C

C ′

H

m

a

a′

m′

p q′
q

=
Case 1: c = ∃(a, c′). Assume that p satisfies A(m, c) =∨

(a′,m′)∈F ∃ (a′,A(m′, c′)). By definition of |=, there is an
injective morphism q′ such that p = q′◦a′ and q′ |= A(m′, c′).
Let q = q′ ◦m′. Then we have p ◦m = q ◦a and q′ ◦m′ |= c′.
By the induction hypothesis, q′ ◦m′ |= c′ ⇔ q |= A(m′, c′),
completing this part of the proof.

Assume that p ◦m |= ∃(a, c′). By definition of |=, there
is an injective morphism q such that p ◦ m = q ◦ a and q |= c′. We construct
jointly epimorphic graph morphisms 〈m′, a′〉 such that m′ ◦ a = a′ ◦m, and an
injective replacement morphism q′ with q′◦m′ = q. By the induction hypothesis,
q |= c′ ⇔ q′ |= A(m′, c′).

QP

P ′

C

C ′Q′
m m′

(1) (2)

H

qp0p q′

Case 2: c = ∃(P $ C, c). Assume that p satisfies
A(m, c) = ∃(P ′ $ C ′,A(m′, c′)) where (1) and (2) are
pushouts. We let q = q′ ◦m′, yielding (p ◦m)(P) = q(C)
and, by the induction hypothesis, q′ |= A(m′, c′) ⇔ q′ ◦
m′ |= c′, implying p ◦m |= ∃(P $ C, c′).

Assume that p ◦m |= c. Since m′ is injective, we can
construct a q′ : C ′ → H such that q = q′ ◦ m′ and the
diagram above commutes, yielding p(P) = q′(C). By the induction hypothesis,
q′ ◦m′ |= c′ ⇔ q′ |= A(m′, c′), thus p |= A(m, c′). �

Example 6. We now show the application of A on rule ρx from example 5 and
condition cx from introductory example 1. The right morphism of ρx is rx =
•
a
•
b
↪→ •

a
•
b
.

A(rx,∃(•1 •
2

+)) = ∃(•
1

•
2

+ •
a
•
b
) ∨ ∃(•

1 = a
•

2 = b

+) ∨ ∃(•
1 = b

•
2 = a

+)∨
∃(•

1 = a
•
2

+•
b

) ∨ ∃(•
1 = b

•
2

+•
a

) ∨ ∃(•
1

•
2 = a

+ •
b
) ∨ ∃(•

1
•

2 = b

+ •
a
)

In a next step, we transform the right application condition of a rule ρ into a
left one. Basically, this encompasses the reverse application of ρ to the condition
itself.

Lemma 2 (from right to left application conditions). There is a transfor-
mation Left such that, for every HR∗ application condition ac of a rule ρ = 〈L←↩
K ↪→ R〉 and for all direct derivations G =⇒

ρ,m,m∗
H, m |= Left(ρ, ac)⇔ m∗ |= ac.

Construction 2 The transformation Left applies the reverse of the rule to each
morphism and object in the condition, yielding false whenever the dangling con-
dition is not met.

173

L K R

X

b

Y Z

a

l r

(2) (1)

cLeft(ρ∗, c)

For a condition ∃(a, c), Left(ρ,∃(a, c)) = ∃(b,Left(ρ∗, c))
if 〈r, a〉 has a pushout complement (1) and ρ∗ =
〈X ←↩ Y ↪→ Z〉 is the rule derived by constructing
pushout (2). Otherwise, Left(ρ,∃(a, ac)) = false.

For a condition ∃(R $ CR, c), Left(ρ, ∃(R $
CR, c)) = ∃(L $ CL,Left(ρ∗, c)), where R = R′⊕P ′, K = K ′⊕P ′, L = L′⊕P ′,
and ρ∗ = 〈L′ ⊕ C ′ ←↩ K ′ ⊕ C ′ ↪→ R′ ⊕ C ′〉 is constructed from ρ by replacing P ′

with C ′. Since P ′ contains only hyperedges, P ′ is unchanged by the rule.
For Boolean formulas over conditions, the construction is straightforward:

Left(ρ, true) = true, Left(ρ,¬c) = ¬Left(ρ, c) and Left(ρ,
∧
j∈J cj) =

∧
j∈J Left(ρ, cj).

Proof. By induction over the structure of ac.
Basis. For ac = true, we have m |= Left(ρ, true) = true⇔ true⇔ m∗ |= true.
Hypothesis. Assume that m |= Left(ρ, c) ⇔ m∗ |= c holds for application
condition c.
Step. We proceed by case distinction over the structure of ac. For Boolean
formulas over conditions and ∃(a, c), the proof is only sketched; for details, refer
to [HPR06].

Case 1: ac = ¬c. Then m |= Left(ρ,¬c) ⇔ m |= ¬Left(ρ, c) ⇔ ¬m |=
Left(ρ, c)⇔ ¬m∗ |= c⇔ m∗ |= ¬c.

Case 2: ac = c ∧ c′. Then m |= Left(ρ, c) ∧ c′ ⇔ m |= Left(ρ, c) ∧ m |=
Left(ρ, c′)⇔ m∗ |= c ∧m∗ |= c′ ⇔ m∗ |= c ∧ c′.

Case 3: ac = ∃(a, c). Assume that (m, a) has a pushout complement. Then
m |= Left(ρ, ac) ⇔ m |= ∃(b,Left(ρ∗, c)). For the derivation, we can decompose
the pushouts of the derivation G =⇒

ρ,m,m∗
H such that m∗ = q ◦ a and m = q′ ◦ b.

By the hypothesis, q′ |= Left(ρ∗, c) ⇔ q |= c, thus m∗ |= ∃(a, c). If (m, a) has
no pushout complement, m |= Left(m, ac)⇔ m |= false and there is no pushout
such that m∗ |= c, i.e. m∗ |= false. Case 4: ac = ∃(R ⊕ P ′ $ R ⊕ C ′, c).
Assume that m |= Left(ρ, ∃(R′ ⊕ P ′ $ R′ ⊕ C ′, c). Then m |= ∃(L′ ⊕ P ′ $
L′ ⊕ C ′,Left(ρ∗, c)) ⇔ ∃q.m(L′ ⊕ P ′) = q(L′ ⊕ C ′) and q |= Left(ρ∗, c). By
the induction hypothesis, q |= Left(ρ∗, c) ⇔ q∗ |= c, thus m |= ∃(L ⊕ P ′ $
L⊕ C ′,Left(ρ∗, c)). �

Example 7. We use example 6 to demonstrate the workings of transformation
Left.

Left(A(rx, cx)) = ∃(•
1

•
2

+ •
a
•
b
) ∨ ∃(•

1 = a
•

2 = b

+) ∨ ∃(•
1 = b

•
2 = a

+)∨
∃(•

1 = a
•
2

+•
b

) ∨ ∃(•
1 = b

•
2

+•
a

) ∨ ∃(•
1

•
2 = a

+ •
b
) ∨ ∃(•

1
•

2 = b

+ •
a
)

Furthermore, we need a transformation that expresses the applicability of a
rule.

Lemma 3 (applicability of a rule [HP09]). There is a transformation Def
from rules into application conditions such that, for every rule ρ and every mor-
phism m : L→ G, m |= Def(ρ)⇔ ∃H.G =⇒∗

ρ,m,m∗
H.

174

Construction 3 For a plain rule p = 〈L ←↩ K ↪→ R〉, let Def(p) = ∧a∈A@a,
where A is the set of all graph morphisms a : L → L′, where L′ is obtained
from L by adding an edge with both end points in L, and for which 〈l, a〉 has
no pushout complement. For a rule ρ = 〈p, ac〉 with application condition, let
Def(ρ) = Def(p) ∧ acL ∧Left(ρ, acR).

Example 8. For our example rule ρx, we have

Def(ρx) = @•
1

•
2
→ •

1
•
2
∧ @•

1
•
2
→ •

1
•
2
∧

@•
1

•
2
→ •

1
•
2
∧ @•

1
•
2
→ •

1
•
2

Now, a transformation C is defined that transforms left application conditions
into constraints over ∅. As in [HPR06], this is done by ensuring that the left
application condition is valid for every morphism ∅ → L.

Lemma 4 (From application conditions to constraints). For every appli-
cation condition ac over L, there is a condition C(ac) such that for every graph
G, G |= C(ac)⇔ ∀m : L→ G.m |= ac.

Construction 4 Let E(P) denote the set of all epimorphisms with domain P .
Define C(ac) := ∧e∈E(L)∀(e ◦ i,Ce(ac)), where i : ∅ → L is the unique morphism
from ∅ to L. Ce(ac) is defined over the structure of conditions as Ce(∃(a, ac)) =
∃(a′, ac) if there is a factorization a = a′ ◦ e, where a′ is an injective morphism
and e an epimorphism, and false otherwise, and Ce(∃(P $ C, c)) = ∃(P $ C, c).
For Boolean conditions, Ce is defined the usual way.

Proof. By induction over the structure of ac. Let Ci(ac) = ∧e∈E(L)∀(e ◦ i, ac).
Basis. For ac = true, we have C(a, true) = Ci(true) = true = ac.
Hypothesis. Assume that G |= C(ac) ⇔ ∀m : L → G.m |= ac holds for appli-
cation condition c.
Step. We proceed by case distinction over the structure of ac.

Case 1: ac = ¬c. G |= C(ρ, ac)⇔ G |= Ci(¬Ce(c)) = ¬Ci(Ce(c))⇔ m |= ac.
Case 2: ac = c ∧ c′. Then G |= C(c ∧ c′)⇔ G |= Ci(Ce(c) ∧ Ce(c′))

⇔ m |= c ∧ c′.
Case 3: ac = ∃(a, c). Then G |= C(ac)⇔ G |= Ci(Ce(ac))

⇔ Ci(∃a′.a = a′ ◦ e ∧G |= ∃(a′, c)) ∨ false)
⇔ Ci(∃a′.a = a′ ◦ e ∧m |= c ∨ false)⇔ m |= ac.

Case 4: ac = ∃(P $ C, c). G |= C(ac)⇔ G |= Ci(Ce(ac))
⇔ Ci(G |= ac)⇔ Ci(m |= c)⇔ m |= ac. �

Example 9. We continue with the term from example 7 and apply transformation
C to it. Let cl = Left(A(ρx, cx)).

C(cl) = ∀(•
1

•
2
, cl) ∧ ∀(•

1 = 2
, cl)

175

4 Weakest liberal preconditions of HR∗ conditions

We now use the transformations defined in the last section to transform con-
ditions over rules and programs. Furthermore, we show that the transformed
conditions are weakest liberal preconditions.

Graph programs are defined as in [HP01,HP09].

Definition 11 (Graph program). Graph programs are inductively defined as
follows:

1. Every rule is a program.
2. Every finite set S of programs is a program.
3. Given programs P and Q, sequential composition (P ;Q) and iteration P ↓

are programs.

We can now define the semantics of graph programs.

Definition 12 (Semantics of graph programs). The semantics of a pro-
gram is a binary relation [[P]] ⊆ G × G. For every rule ρ, every set S of pro-
grams, and every pair of programs P and Q, [[p]] = {〈G,H〉 |G ⇒p H}, [[S]] =⋃
P∈S [[P]] for finite sets S of programs, [[(P ;Q)]] = [[Q]]◦[[P]], [[P ↓]] = {〈G,H〉 | 〈G,H〉 ∈

[[P]]∗ ∧ @M. 〈H,M〉 ∈ [[P]]}, where [[P]]∗ is the reflexive-transitive closure of [[P]].

Definition 13 (liberal precondition). For a program P and a condition d,
a condition c is a liberal precondition relative to d if for all graphs G satisfying
c, 〈G,H〉 ∈ [[P]] implies H |= d for all H. A liberal precondition c is a weakest
liberal precondition of P relative to d, denoted by wlp(P, d), if any precondi-
tion of P relative to d implies c. A (weakest) liberal precondition is a (weakest)
precondition if G⇒ρ H for some H and P terminates for G.

Combining the basic transformations from Section 3, we can now define a
transformation of a program and a postcondition into a weakest (liberal) pre-
condition similar to [HPR06].

Theorem 1 (weakest liberal precondition). There is a transformation Wlp
such that for every program P and for every condition post, Wlp(P,post) is a
weakest liberal precondition of P and post.

Construction 5 For any postcondition d, any rule ρ, any set S of programs,
and any programs P,Q, let

Wlp(ρ, d) = C(Def(p)⇒ Left(p,A(r, d)))

Wlp(S, d) =
∧

P∈S
Wlp(P, d)

Wlp((P ;Q), d) = Wlp(P,Wlp(Q, d))

Wlp(P ↓, d) = Wlp(d ∨
∞∧

i=1

Wlp(P i, d),Wlp(P, false)⇒ d)

where P i is defined inductively as P 1 = P and P i+1 = (P i;P).

176

Proof. For rules ρ, we show that Wlp(P, d) is a weakest liberal precondition. For
all objects G, we have

G |= Wlp(p, d)⇔ G |=m C(Def(ρ)⇒ Left(ρ,A(ρ, d))) (Def. Wlp)
⇔ ∀L→ G.m |=m Def(ρ)⇒ Left(ρ,A(ρ, d)) (Def. C)
⇔ ∀L→ G.m |=m Def(ρ)⇒ m |=m∗ Left(ρ,A(ρ, d)) (Def. |=)
⇔ ∀L→ G,R→ H.m |=m Def(ρ)⇒ m∗ |=m∗ A(ρ, d) (Def. Left)
⇔ ∀L→ G,R→ H.(G⇒ρ,m,m∗ H)⇒ H |= d (Def. A,Def)
⇔ ∀H.G,H ∈ ρ⇒ H |= d (Application of ρ)
⇔ G is a weakest liberal precondition.

For composed graph programs, see the proof in [HPR06].

Similar to [HPR06], a weakest liberal precondition can be transformed into a
weakest precondition. It remains to be shown that the additional requirements
for weakest preconditions can be met.

5 Conclusion

We have presented a transformation of HR∗ postconditions over graph programs
to weakest liberal HR∗ preconditions. These conditions are an extension of HR
and HR+ conditions of [HR10] which allows the partitioning of graphs. We have
shown that a HR∗ constraint can be transformed into a right application con-
dition, that a right application condition can be transformed into a left, and
that left application conditions, including the implicit dangling condition, can
be transformed into a precondition in the form of a HR∗ constraint. These trans-
formations are used to construct a weakest liberal precondition for a program
respective to a postcondition. Thus the problem whether a program is weakly
correct relative to its pre- and postcondition is reduced to the problem whether
the weakest liberal precondition implies the precondition.

As further work, the result for weakest liberal preconditions shall be general-
ized for weakest preconditions. Furthermore, a theorem prover similar to ProCon
[Pen09] shall be developed that can check whether a HR∗ condition implies an-
other HR∗ condition.

References

[Cou97] Bruno Courcelle. On the expression of graph properties in some fragments
of monadic second-order logic. In Descriptive Complexity and Finite Models:
Proceedings of a DIMACS Workshop, Chapter 2, 1997.

[DHK97] Frank Drewes, Annegret Habel, and Hans-Jörg Kreowski. Hyperedge re-
placement graph grammars. In Handbook of Graph Grammars and Com-
puting by Graph Transformation, volume 1, pages 95–162. World Scientific,
1997.

[Dij76] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice-Hall, Engle-
wood Cliffs, NJ, 1976.

177

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fun-
damentals of Algebraic Graph Transformation. EATCS Monographs of The-
oretical Computer Science. Springer, Berlin, 2006.

[Ehr79] Hartmut Ehrig. Introduction to the algebraic theory of graph grammars. In
Graph-Grammars and Their Application to Computer Science and Biology,
volume 73 of LNCS, pages 1–69. Springer, 1979.

[Gai82] H. Gaifman. On local and non-local properties. In J. Stern, editor, Pro-
ceedings of the Herbrand symposium: Logic Colloquium’81, pages 105–135.
North Holland Pub. Co., 1982.

[Hab92] Annegret Habel. Hyperedge Replacement: Grammars and Languages, volume
643 of LNCS. Springer, Berlin, 1992.

[HP01] Annegret Habel and Detlef Plump. Computational completeness of pro-
gramming languages based on graph transformation. In Proc. Foundations
of Software Science and Computation Structures (FOSSACS 2001), volume
2030 of LNCS, pages 230–245. Springer, 2001.

[HP09] Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level trans-
formation systems relative to nested conditions. Mathematical Structures in
Computer Science, pages 1–52, 2009.

[HPR06] Annegret Habel, Karl-Heinz Pennemann, and Arend Rensink. Weakest pre-
conditions for high-level programs. In Graph Transformations (ICGT 2006),
volume 4178 of Lecture Notes in Computer Science, pages 445–460. Springer,
2006.

[HR10] Annegret Habel and Hendrik Radke. Expressiveness of graph conditions
with variables. In Int. Colloquium on Graph and Model Transformation on
the occasion of the 65th birthday of Hartmut Ehrig, volume 30 of Electronic
Communications of the EASST, 2010. to appear.

[Pen09] Karl-Heinz Pennemann. Development of Correct Graph Transformation Sys-
tems. PhD thesis, Universität Oldenburg, 2009.

[PH96] Detlef Plump and Annegret Habel. Graph unification and matching. In
Graph Grammars and Their Application to Computer Science, volume 1073
of LNCS, pages 75–89. Springer, 1996.

[Pra04] Ulrike Prange. Graphs with variables as an adhesive HLR category. Private
communication, 2004.

178

